time dependance
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
A. Abidi ◽  
A. Trabelsi ◽  
S. Krichene

In the dynamic description of physical systems, the two coupled harmonic oscillators time-dependent mass, angular frequency and coupling parameter are recognized as a good working example. We present in this work an analytical treatment with a numerical evaluation of the entanglement and the nonadiabatic Berry phases in the vacuum state. On the basis of an exact resolution of the wave function solution of the time-dependent Schr¨odinger’s equation (T DSE) using the Heisenberg picture approach, we derive the wave function of the two coupled harmonic oscillators. At the logarithmic scale, we derive the entanglement entropies and the temperature. We discuss the existence of the cyclical initial state (CIS) based on an instant Hamiltonian and we obtain the corresponding nonadiabatic Berry phases through a period T. Moreover, we extend the result to case of N coupled harmonic oscillators. We use the numerical calculation to follow the dynamic evolution of the entanglement in comparison to the time dependance of the nonadiabatic Berry phases and the time dependance of the temperature. For two coupled harmonic oscillators with time-independent mass and angular frequency, the nonadiabatic Berry phases present a very slight oscillations with the equivalent period as the period of the entanglement. A second model is composed of two coupled harmonic oscillators with angular frequency which change initially as well as lately. Here in, the entanglement and the temperature exhibit the same oscillatory behavior with exponential increase in temperature.


Author(s):  
Ts. Genova ◽  
E. Borisova ◽  
N. Penkov ◽  
B. Vladimirov ◽  
Al. Zhelyazkova ◽  
...  

Author(s):  
Tinard Violaine ◽  
Nguyen Quang Tam ◽  
Fond Christophe

High damping rubber (HDR) is used in HDR bearings (HDRBs) which are dissipating devices in structural systems. These devices actually have to support permanent static load in compression and potential cyclic shear when earthquakes occur. Mastering the behavior of bearings implies an accurate understanding of HDR response in such configuration. The behavior of HDR is, however, complex due to the nonlinearity and time dependance of stress–strain response and especially Mullins effect. To the authors' knowledge, tests on HDR under combined quasi-static compression and cyclic shear (QC-CS) have not been performed with regard to Mullins effect yet. The purpose of this study is thus to assess experimentally Mullins effect in HDR, especially under QC-CS. In order to achieve this aim, cyclic tensile and compression tests were first carried out to confirm the occurrence of Mullins effect in the considered HDR. Then, an original biaxial setup allowing testing HDR specimen under QC-CS was developed. This setup enables us to identify Mullins effect of the considered HDR under this kind of loading. Tests carried out with this setup were thus widened to the study of the influence of compression stress on shear response under this loading, especially in terms of shear modulus and density of energy dissipation.


Author(s):  
J. Schellscheidt ◽  
S. Baas ◽  
P. Weber ◽  
P. Ciclitira ◽  
E. Harms ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document