scholarly journals A review of the various treatments of oil-based drilling fluids filter cakes

Author(s):  
Osama Siddig ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny

AbstractTreatment of the filter cake layer after drilling is essential for better cement integrity and to retain the original reservoir permeability. Compared to water-based filter cake, oil-based mud filter cake removal is more sophisticated as oil encloses the filter cake’s particles. Therefore, oil-based mud clean-up requires wettability alteration additives (mutual solvents and/or surfactants) for permitting acid/filter cake reaction. With an appropriate acid, microemulsions were reported to be very efficient in cleaning oil-based filter cakes, due to their low interfacial tension and high acid solubility. The objective of this paper is to provide an overview of the different techniques and treatment solutions utilized in oil-based filter cake clean-up. Furthermore, a synopsis of the various treatments for drilling fluids densified with different weighting materials is presented. Subsequently, the research limitations and opportunities have been highlighted for future work. In the light of the review that has been presented in this paper, it's recommended to conduct further investigation on some areas related to filter cake removal. The removal of filter cake formed from weighting materials other than barite, calcium carbonate, ilmenite, and manganese tetroxide needs to be investigated thoroughly. Additionally, the overall efficiency of oil-based mud removal needs to be studied under wide ranges of temperature, salinity, and pH. The utilization of surfactant-free microemulsions in filter cake treatment could also be investigated.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mohamed Mahmoud

The well clean-up process involves the removal of impermeable filter cake from the formation face. This process is essential to allow the formation fluids to flow from the reservoir to the wellbore. Different types of drilling fluids such as oil- and water-based drilling fluids are used to drill oil and gas wells. These drilling fluids are weighted with different weighting materials such as bentonite, calcium carbonate, and barite. The filter cake that forms on the formation face consists mainly of the drilling fluid weighting materials (around 90%), and the rest is other additives such as polymers or oil in the case of oil-base drilling fluids. The process of filter cake removal is very complicated because it involves more than one stage due to the compatibility issues of the fluids used to remove the filter cake. Different formulations were used to remove different types of filter cake, but the problem with these methods is the removal efficiency or the compatibility. In this paper, a new method was developed to remove different types of filter cakes and to clean-up oil and gas wells after drilling operations. Thermochemical fluids that consist of two inert salts when mixed together will generate very high pressure and high temperature in addition to hot water and hot nitrogen. These fluids are sodium nitrate and ammonium chloride. The filter cake was formed using barite and calcite water- and oil-based drilling fluids at high pressure and high temperature. The removal process started by injecting 500 ml of the two salts and left for different time periods from 6 to 24 h. The results of this study showed that the newly developed method of thermochemical removed the filter cake after 6 h with a removal efficiency of 89 wt% for the barite filter cake in the water-based drilling fluid. The mechanisms of removal using the combined solution of thermochemical fluid and ethylenediamine tetra-acetic acid (EDTA) chelating agent were explained by the generation of a strong pressure pulse that disturbed the filter cake and the generation of the high temperature that enhanced the barite dissolution and polymer degradation. This solution for filter cake removal works for reservoir temperatures greater than 100 °C.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Arne Lüken ◽  
John Linkhorst ◽  
Robin Fröhlingsdorf ◽  
Laura Lippert ◽  
Dirk Rommel ◽  
...  

AbstractThe filtration performance of soft colloid suspensions suffers from the agglomeration of the colloids on the membrane surface as filter cakes. Backflushing of fluid through the membrane and cross-flow flushing across the membrane are widely used methods to temporally remove the filter cake and restore the flux through the membrane. However, the phenomena occurring during the recovery of the filtration performance are not yet fully described. In this study, we filtrate poly(N-isopropylacrylamide) microgels and analyze the filter cake in terms of its composition and its dynamic mobility during removal using on-line laser scanning confocal microscopy. First, we observe uniform cake build-up that displays highly ordered and amorphous regions in the cake layer. Second, backflushing removes the cake in coherent pieces and their sizes depend on the previous cake build-up. And third, cross-flow flushing along the cake induces a pattern of longitudinal ridges on the cake surface, which depends on the cross-flow velocity and accelerates cake removal. These observations give insight into soft colloid filter cake arrangement and reveal the cake’s unique behaviour exposed to shear-stress.


1999 ◽  
Vol 121 (3) ◽  
pp. 149-153 ◽  
Author(s):  
U. A. Tare ◽  
N. E. Takach ◽  
S. Z. Miska ◽  
F. B. Growcock ◽  
N. Davis

This work discusses the effect of incorporating blast furnace slag (BFS) as an additive in water-based drilling fluids. The intent of this treatment is rapid development of a thin, impervious, and easily removable filter cake, thereby minimizing detrimental impact of the drilling fluid on formation productivity as opposed to previous applications of BFS in universal fluids. To evaluate the impact of BFS on filter cake properties, permeability plugging apparatus (PPA) tests and dynamic formation damage (DFD) studies were conducted. Drill-in fluids and dispersed muds were tested using varying quantities of BFS. Once a steady rate of dynamic filter cake deposition was achieved, the BFS in the filter cakes was chemically activated. The results obtained from these activation studies were compared with those obtained with no BFS and with unactivated BFS. The nature of the filter cakes was examined with an environmental scanning electron microscope (ESEM). Results obtained from the PPA tests indicate substantial decreases in initial spurt loss and filtrate volume with increasing concentration of BFS. The DFD studies substantiate the aforementioned observations and show enhancement of return permeabilities with BFS activation. ESEM studies demonstrate that BFS can consolidate filter cakes.


2021 ◽  
Vol 5 (2) ◽  
pp. 1-14
Author(s):  
Mahmoud O

The increasing demand for deeper drilling and more complicated wells fastens the way for improved drilling fluid (mud) technologies and promising additives. Several studies have shown numerous improvements in mud characteristics upon using ilmenite compared to the commonly used weighting materials. This study aims at investigating the removal of filter cake deposited by ilmenite water-based drilling fluid under harsh conditions using low-concentration (7.5 wt%) of hydrochloric acid (HCl) and chelating agent (HEDTA) to prevent iron precipitation during reaction. API filter press was used to conduct the filtration tests and generate the filter cake at a pressure ~ 300 psi and temperature ~ 250°F. Different sandstone cores of 2.5-in. diameter and 1-in. thickness were used to simulate the formation during filtration. Filtrate fluids were collected for 30 minutes as per API procedures and computerized tomography (CT) scan was used to characterize the cores with the deposited filter cakes. The filter cakes were soaked with HCl–chelate solution for six hours. Cores with the remaining filter cakes were CT scanned again. Effluent solutions resulting from the aforementioned soaking process were analyzed using inductively coupled plasma (ICP). Scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) was used to analyze the dried filter cakes and remaining residue. CT scan and SEM-EDS showed two layers of the filter cake with different densities but similar elemental composition. Using 7.5 wt% of HCl can partially remove the filter cake generated by ilmenite water-based drilling fluids. Adding the chelate showed minimal impact on the filter cake removal-efficiency; however, it helped nullify the corrosion issues during the treatment. This study provides a step forward on the way to chemically remove ilmenite-based filter cake using low acid concentration and virtually overcome corrosion issues encountered while acidizing.


2020 ◽  
Vol 12 (8) ◽  
pp. 3427
Author(s):  
Osama Siddig ◽  
Saad Al-Afnan ◽  
Salaheldin Elkatatny ◽  
Mohamed Bahgat

An impermeable layer “filter cake” usually forms during the overbalanced drilling technique. Even though it helps in protecting the formation from a further invasion of drilling fluids, the removal of this layer is essential for a proper cement job and to avoid any reduction in wellbore deliverability. The design of the removal process is complicated and depends on the filter cake composition and homogeneity. This paper presents an experimental evaluation on the usage of a novel cake washer (NCW) in the removal of a filter cake formed by an invert emulsion oil-based drilling fluid that contains calcium carbonate as a weighting material while drilling a horizontal reservoir. The proposed NCW is a mixture of organic acid, mutual solvent and nonionic surfactant. It is designed to enable restored wellbore permeability for a sustainable production. Since the filter cake mainly consists of the weighting material, the solubility of calcium carbonate in NCW at different ranges of temperature, duration and concentration was investigated. An actual casing joint was used to test the corrosion possibility of the treating solution. High-pressure and high-temperature (HPHT) filtration tests on ceramic discs and Berea sandstone core samples were conducted to measure the efficiency of the filter cake removal and the retained permeability. Ethylene glycol mono butyl ether (EGMBE) was used as a mutual solvent and the solubility was higher compared to when the mutual solvent was not used in the washer formulation. A significant increase in calcium carbonate dissolution with time was observed for a duration of 24 h. The solubility was found to be proportional to the concentration of NCW with optimum results of 99% removal at a temperature of around 212 °F. At those conditions, no major corrosion problems were detected. Permeability of the core retained its pristine value after the treatment.


2021 ◽  
Author(s):  
Arne Lüken ◽  
Lucas Stüwe ◽  
Johannes Lohaus ◽  
John Linkhorst ◽  
Matthias Wessling

Abstract During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.


2021 ◽  
Vol 11 (11) ◽  
pp. 4029-4045
Author(s):  
Asad Elmgerbi ◽  
Gerhard Thonhauser ◽  
Alexander Fine ◽  
Rafael E. Hincapie ◽  
Ante Borovina

AbstractPredicting formation damage in cased-hole and open-hole completion wells is of high importance. This is especially relevant when the damage is caused by reservoir drill-in fluids hence being well-bore induced. Cake filter removal has proven to be a good approach to estimate induced damage and to evaluate drill-in fluids’ performance. We present an experimental methodology to evaluate filter cake removal, which could be achieved during the well's initial production. An improved experimental setup, to the ones presented in literature, has been developed to enhance data quality. A twofold approach was used for setup design, and first, it can be integrated with devices used to evaluate the static/dynamic filter-cake. Second, it can be used to simulate more realistic cases (field related) by adjusting the experiment parameters. Hence, to replicate the expected drawdown pressure as well as the corresponding flow rate of the studied reservoir. Three key indicators directly related to filter-cake removal were used as evaluators in this work. Lift-off pressure, internal and external filter cakes removal efficiency. Three reservoir fluid systems were studied, two polymer-based and one potassium carbonate. Results show that pressure required to initiate the collapsing process of the filter cake is not significant. Polymer-based drilling fluids showed better performance in terms of external and internal filter cake cleaning efficiency comparing to potassium carbonate. Moreover, we observed that filtrate volume has no clear relation with the degree of residual damage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arne Lüken ◽  
Lucas Stüwe ◽  
Johannes Lohaus ◽  
John Linkhorst ◽  
Matthias Wessling

AbstractDuring soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.


2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Yami ◽  
Michael Onoriode ◽  
Jacques Butcher ◽  
Nivika Gupta

Abstract The present paper describes the results of the formulation of an acid-soluble low ECD organoclay-free invert emulsion drilling fluid formulated with acid soluble manganese tetroxide and a specially designed bridging package. The paper also presents a short summary of field applications to date. The novel, non-damaging fluid has superior rheology resulting in lower ECD, excellent suspension properties for effective hole cleaning and barite-sag resistance while also reducing the risk of stuck pipe in high over balance applications. 95pcf high performance invert emulsion fluid (HPIEF) was formulated using an engineered bridging package comprising of acid-soluble bridging agents and an acid-soluble weighting agent viz. manganese tetroxide. The paper describes the filtration and rheological properties of the HPIEF after hot rolling at 300oF. Different tests such as contamination testing, sag-factor analysis, high temperature-high pressure rheology measurements and filter-cake breaking studies at 300oF were performed on the HPIEF. The 95pcf fluid was also subjected to particle plugging experiments to determine the invasion characteristics and the non-damaging nature of the fluids. The 95pcf HPIEF exhibited optimal filtration properties at high overbalance conditions. The low PV values and rheological profile support low ECDs while drilling. The static aging tests performed on the 95pcf HPIEF resulted in a sag factor of less than 0.53, qualifying the inherent stability for expected downhole conditions. The HPIEF demonstrated resilience to contamination testing with negligible change in properties. Filter-cake breaking experiments performed using a specially designed breaker fluid system gave high filter-cake breaking efficiency. Return permeability studies were performed with the HPIEF against synthetic core material, results of which confirmed the non-damaging design of the fluid. The paper thus demonstrates the superior performance of the HPIEF in achieving the desired lab and field performance.


Sign in / Sign up

Export Citation Format

Share Document