Novel transient multicomponent induction logging method for the determination of dip angle and anisotropy of formation

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. D181-D197
Author(s):  
Xiyong Yuan ◽  
Shaogui Deng ◽  
Yiren Fan ◽  
Xufei Hu ◽  
Zhenguan Wu ◽  
...  

The relative dip angle and anisotropy of the anisotropic formation are generally determined through an inversion process. We have studied the responses of the novel transient multicomponent induction logging method and find that all of the components measured in the instrument coordinate system have the same decay with time. However, the cross component decays much faster than the coaxial or coplanar components in the formation coordinate system. We adopt an algebraic time-domain method to calculate the dip angle and anisotropy coefficient and thereby avoid the inversion process. The accuracy and applicability of this pseudoinversion method are studied theoretically. Numerical results demonstrate that coaxial, coplanar, and cross components are used to calculate the apparent relative dip angle that yields the exactly true value at very early times and then goes through a transition deviating from the true dip and gradually approaches the true value again at late times. The apparent anisotropy is calculated by the coaxial and coplanar components and is equal to zero at early times and nonzero to the true anisotropy during the transition times. Moreover, by using realistic source dipole moments as well as adding random measurement errors, the practicality of this algebraic method is also investigated. Determination of the relative dip is still stable and valid. Determination of the anisotropy is more easily affected by measurement error and has some application limitations.

2020 ◽  
Vol 962 (8) ◽  
pp. 24-37
Author(s):  
V.E. Tereshchenko

The article suggests a technique for relation global kinematic reference system and local static realization of global reference system by regional continuously operated reference stations (CORS) network. On the example of regional CORS network located in the Novosibirsk Region (CORS NSO) the relation parameters of the global reference system WGS-84 and its local static realization by CORS NSO network at the epoch of fixing stations coordinates in catalog are calculated. With the realization of this technique, the main parameters to be determined are the speed of displacement one system center relativly to another and the speeds of rotation the coordinate axes of one system relatively to another, since the time evolution of most stations in the Russian Federation is not currently provided. The article shows the scale factor for relation determination of coordinate systems is not always necessary to consider. The technique described in the article also allows detecting the errors in determining the coordinates of CORS network in global coordinate system and compensate for them. A systematic error of determining and fixing the CORS NSO coordinates in global coordinate system was detected. It is noted that the main part of the error falls on the altitude component and reaches 12 cm. The proposed technique creates conditions for practical use of the advanced method Precise Point Positioning (PPP) in some regions of the Russian Federation. Also the technique will ensure consistent PPP method results with the results of the most commonly used in the Russian Federation other post-processing methods of high-precision positioning.


Author(s):  
Hao Wang ◽  
Ning Li ◽  
Caizhi Wang ◽  
Hongliang Wu ◽  
Peng Liu ◽  
...  

Abstract In the process of dipole-source acoustic far-detection logging, the azimuth of the fracture outside the borehole can be determined with the assumption that the SH–SH wave is stronger than the SV–SV wave. However, in slow formations, the considerable borehole modulation highly complicates the dipole-source radiation of SH and SV waves. A 3D finite-difference time-domain method is used to investigate the responses of the dipole-source reflected shear wave (S–S) in slow formations and explain the relationships between the azimuth characteristics of the S–S wave and the source–receiver offset and the dip angle of the fracture outside the borehole. Results indicate that the SH–SH and SV–SV waves cannot be effectively distinguished by amplitude at some offset ranges under low- and high-fracture dip angle conditions, and the offset ranges are related to formation properties and fracture dip angle. In these cases, the fracture azimuth determined by the amplitude of the S–S wave not only has a $180^\circ $ uncertainty but may also have a $90^\circ $ difference from the actual value. Under these situations, the P–P, S–P and S–S waves can be combined to solve the problem of the $90^\circ $ difference in the azimuth determination of fractures outside the borehole, especially for a low-dip-angle fracture.


1914 ◽  
Vol 8 (1) ◽  
pp. 25-49
Author(s):  
Alfred L. P. Dennis

War has marked the year 1913; and charges and countercharges as to alleged atrocities by belligerents have been rife. Treaties were drawn to be promptly torn up; and solemn declarations of intention and policy often proved futile. The existence of internal disorder and the outbreak of domestic revolutions in several countries have also exerted disturbing influences on international relations. The result was economic loss and diplomatic tension even well beyond the field of military operations. And these conditions have led to renewed activity in the struggle for concessions and investment in renascent communities. Racial and religious sentiments have also aroused bitter feeling; while political leaders in several countries compel renewed consideration of the weight of individuals in the determination of the world's affairs.In large part the problems of 1913 were historic; but in part they were affected by apparently impending changes which we cannot as yet define. Thus the influence of socialism and of various forms of radical thought on international relations is a factor. The adoption of oil as a naval fuel, the opening of the Panama Canal, the plans for administrative reorganization of Turkey, and its capitalistic development, the renewed debate as to the Monroe doctrine, and the problem of China are all matters whose future significance scarcely concern us here; but their influence in the past year has been unquestionably great. We cannot estimate as yet the true value of many recommendations touching various fields of international coöperation; and the value of delay in international action still remains in dispute. So on the whole the year 1913 has apparently been the year of the cynic.


2017 ◽  
Vol 14 (2) ◽  
pp. 55-68 ◽  
Author(s):  
Rita Bužinskienė

AbstractIn accordance with generally accepted accounting standards, most intangibles are not accounted for and not reflected in the traditional financial accounting. For this reason, most companies account intangible assets (IAs) as expenses. In the research, 57 sub-elements of IAs were applied, which are grouped into eight main elements of IAs. The classification of IAs consists in two parts of assets: accounting and non-accounting. This classification can be successfully applied in different branches of enterprises, to expand and supplement the theoretical and practical concepts of the company's financial management. The article proposes to evaluate not only the value of financial information for IAs (accounted) but also the value of non-financial information for IAs (non-accounted), thus revealing the true value of IAs that is available to the companies of Lithuania. It names a value of general IAs. The results of the research confirmed the IA valuation methodology, which allows companies to calculate the fair value of an IA. The obtained extended IAs valuation information may be valuable to both the owners of the company and investors, as this value plays an important practical role in assessing the impact of IAs on the market value of companies.


Author(s):  
Jon Geist ◽  
Muhammad Yaqub Afridi ◽  
Craig D. McGray ◽  
Michael Gaitan

Cross-sensitivity matrices are used to translate the response of three-axis accelerometers into components of acceleration along the axes of a specified coordinate system. For inertial three-axis accelerometers, this coordinate system is often defined by the axes of a gimbal-based instrument that exposes the device to different acceleration inputs as the gimbal is rotated in the local gravitational field. Therefore, the cross-sensitivity matrix for a given three-axis accelerometer is not unique. Instead, it depends upon the orientation of the device when mounted on the gimbal. We define nine intrinsic parameters of three-axis accelerometers and describe how to measure them directly and how to calculate them from independently determined cross-sensitivity matrices. We propose that comparisons of the intrinsic parameters of three axis accelerometers that were calculated from independently determined cross-sensitivity matrices can be useful for comparisons of the cross-sensitivity-matrix measurement capability of different institutions because the intrinsic parameters will separate the accelerator-gimbal alignment differences among the participating institutions from the purely gimbal-related differences, such as gimbal-axis orthogonality errors, z-axis gravitational-field alignment errors, and angle-setting or angle-measurement errors.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2327-2338 ◽  
Author(s):  
Hojjat Kabirzadeh ◽  
Elena Rangelova ◽  
Gyoo Ho Lee ◽  
Jaehoon Jeong ◽  
Ik Woo ◽  
...  

Summary The safe and economical determination of a wellbore trajectory in directional drilling is traditionally achieved by measurement-while-drilling (MWD) methods, which implement magnetic north-seeking sensor packages. Inaccuracies in the determination of well path arise because of random and systematic errors in the measurements of the sensors. Multistation analysis (MSA) and magnetic in-field referencing (IFR) have already demonstrated the potential to decrease the effects of errors because of magnetization of drillstring components along with variable errors caused by irregularities in the magnetization of crustal rocks in the vicinity of wells. Advanced MSA methodologies divide a borehole into several sections and use the average reference values of the total magnetic field, declination, and dip angle for analysis of errors in each section. Our investigations indicate that the variable-reference MSA (VR-MSA) can lead to a better determination of errors, specifically in areas of high magnetization. In this methodology, magnetic reference values are estimated at each station using forward and inverse modeling of surface-magnetic observations from IFR surveys. The fixed errors in magnetometer components are then calculated by minimizing the variance of the difference between the measured and unique estimated reference values at each station. A Levenberg-Marquardt algorithm (LMA) is adopted to solve the nonlinear optimization problem. Examination of this methodology using MWD data confirms more than 20% improvement in well-path-determination accuracy by comparing the results with the corrected path from the conventional MSA method and gyro surveys.


2021 ◽  
Author(s):  
Andreas Zimmermann ◽  
Martin Kaltschmitt

Abstract Bioethanol stillage, the main by-product of industrial bioethanol production, is a potential substrate for fructans. However, the determination and quantification of fructans in such complex sample matrices is still a challenge for the corresponding analytics to be overcome in order to allow for the identification and utilisation of such unused fructan sources. Especially a possible utilisation or rather the corresponding process development requires appropriate analytics first. Thus, this paper aims to illuminate the basics of fructan quantification in stillage and the corresponding challenges particularly arising with widely used HPLC-RID systems. On this basis, a new approach for fructan quantification is presented based on such HPLC-RID systems allowing for a reliable and especially simple fructan determination in bioethanol stillage for comparably high sample throughput. The developed method performs fructan quantification by determination of fructose and glucose equivalents after a targeted acidic hydrolysis adapted to the respective sample matrix. By means of two different stationary phases, the problem of limited resolution in case of HPLC-RID is overcome and thus measurement errors are reduced. The approach towards the adapted analytical method can be transferred easily to comparable complex sample matrices.


Sign in / Sign up

Export Citation Format

Share Document