inhibit antibody
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Kengo kobayashi ◽  
Yuriko Hirono ◽  
Honami Nakata ◽  
Mayuko Miyagawa ◽  
Kent E Pinkerton ◽  
...  

2020 ◽  
Author(s):  
Jan Zlamal ◽  
Karina Althaus ◽  
Hisham Jaffal ◽  
Lisann Pelzl ◽  
Anurag Singh ◽  
...  

Abstract Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2 virus. However, the exact mechanisms of thromboembolic events remain elusive. In this work, we show that immunoglobulin G (IgG) subclass in patients with COVID-19 trigger the formation of procoagulant PLTs in a Fc-gamma-RIIA (FcγRIIA) dependent pathway leading to increased thrombus formation in vitro. Most importantly, these events were significantly inhibited via FcγRIIA blockade as well as by the elevation of PLTs’ intracellular cyclic-adenosine-monophosphate (cAMP) levels by the clinical used agent Iloprost. The novel findings of FcγRIIA mediated prothrombotic conditions in terms of procoagulant PLTs leading to higher thrombus formation as well as the successful inhibition of these events via Iloprost could be promising for the future treatment of the complex coagulopathy observed in COVID-19 disease. Key points - Fc-gamma-receptor IIA mediated PS externalization on the PLT surface triggers increased thrombus formation - Inductors of cAMP inhibit antibody-mediated thrombus formation and may have potential therapeutic advantage in COVID-19


Author(s):  
Christian Seitz ◽  
Lorenzo Casalino ◽  
Robert Konecny ◽  
Gary Huber ◽  
Rommie E. Amaro ◽  
...  

AbstractInfluenza neuraminidase is an important drug target. Glycans are present on neuraminidase, and are generally considered to inhibit antibody binding via their glycan shield. In this work we studied the effect of glycans on the binding kinetics of antiviral drugs to the influenza neuraminidase. We created all-atom in silico systems of influenza neuraminidase with experimentally-derived glycoprofiles consisting of four systems with different glycan conformations and one system without glycans. Using Brownian dynamics simulations, we observe a two- to eight-fold decrease in the rate of ligand binding to the primary binding site of neuraminidase due to the presence of glycans. These glycans are capable of covering much of the surface area of neuraminidase, and the ligand binding inhibition is derived from glycans sterically occluding the primary binding site on a neighboring monomer. Our work also indicates that drugs preferentially bind to the primary binding site (i.e. the active site) over the secondary binding site, and we propose a binding mechanism illustrating this. These results help illuminate the complex interplay between glycans and ligand binding on the influenza membrane protein neuraminidase.Statement of SignificanceThe influenza glycoprotein neuraminidase is the target for three FDA-approved influenza drugs in the US. However, drug resistance and low drug effectiveness merits further drug development towards neuraminidase, which is hindered by our limited understanding of glycan effects on ligand binding. Generally, drug developers do not include glycans in their development pipelines. Here, we show that even though glycans can reduce drug binding towards neuraminidase, we recommend future drug development work to focus on strong binders with a long lifetime. Furthermore, we examine the binding competition between the primary and secondary binding sites on neuraminidase, leading us to propose a new, to the best of our knowledge, multivalent binding mechanism.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Davor Brinc ◽  
Alan H. Lazarus

Abstract Anti-D is routinely and effectively used to prevent hemolytic disease of the fetus and newborn (HDFN) caused by the antibody response to the D antigen on fetal RBCs. Anti-D is a polyclonal IgG product purified from the plasma of D-alloimmunized individuals. The mechanism of anti-D has not been fully elucidated. Antigenic epitopes are not fully masked by anti-D and are available for immune system recognition. However, a correlation has frequently been observed between anti-D-mediated RBC clearance and prevention of the antibody response, suggesting that anti-D may be able to destroy RBCs without triggering the adaptive immune response. Anti-D-opsonized RBCs may also elicit inhibitory FcγRIIB signaling in B cells and prevent B cell activation. The ability of antigen-specific IgG to inhibit antibody responses has also been observed in a variety of animal models immunized with a vast array of different antigens, such as sheep RBCs (SRBC). This effect has been referred to as antibody-mediated immune suppression (AMIS). In animal models, IgG inhibits the antibody response, but the T-cell response and memory may still be intact. IgG does not mask all epitopes, and IgG-mediated RBC clearance or FcγRIIB-mediated B-cell inhibition do not appear to mediate the AMIS effect. Instead, IgG appears to selectively disrupt B cell priming, although the exact mechanism remains obscure. While the applicability of animal models of AMIS to understanding the true mechanism of anti-D remains uncertain, the models have nevertheless provided us with insights into the possible IgG effects on the immune response.


2009 ◽  
Vol 258 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Simona Bancos ◽  
Matthew P. Bernard ◽  
David J. Topham ◽  
Richard P. Phipps

2007 ◽  
Vol 23 (4) ◽  
pp. 1196-1202 ◽  
Author(s):  
P. Comoli ◽  
F. Ginevri ◽  
R. Maccario ◽  
M. A. Avanzini ◽  
M. Marconi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document