scholarly journals Mesophilic and Thermophilic Anaerobic Digestion of Wheat Straw in a CSTR System with ‘Synthetic Manure’: Impact of Nickel and Tungsten on Methane Yields, Cell Count, and Microbiome

2022 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Richard Arthur ◽  
Sebastian Antonczyk ◽  
Sandra Off ◽  
Paul A. Scherer

Lignocellulosic residues, such as straw, are currently considered as candidates for biogas production. Therefore, straw fermentations were performed to quantitatively estimate methane yields and cell counts, as well as to qualitatively determine the microbiome. Six fully automated, continuously stirred biogas reactors were used: three mesophilic (41 °C) and three thermophilic (58 °C). They were fed every 8 h with milled wheat straw suspension in a defined, buffered salt solution, called ‘synthetic manure’. Total reflection X-ray fluorescence spectrometry analyses showed nickel and tungsten deficiency in the straw suspension. Supplementation of nickel and subsequently tungsten, or with an increasing combined dosage of both elements, resulted in a final concentration of approximately 0.1 mg/L active, dissolved tungsten ions, which caused an increase of the specific methane production, up to 63% under mesophilic and 31% under thermophilic conditions. That is the same optimal range for pure cultures of methanogens or bacteria found in literature. A simultaneous decrease of volatile fatty acids occurred. The Ni/W effect occurred with all three organic loading rates, being 4.5, 7.5, and 9.0 g volatile solids per litre and day, with a concomitant hydraulic retention time of 18, 10, or 8 days, respectively. A maximum specific methane production of 0.254 m3 CH4, under standard temperature and pressure per kg volatile solids (almost 90% degradation), was obtained. After the final supplementation of tungsten, the cell counts of methanogens increased by 300%, while the total microbial cell counts increased by only 3–62%. The mesophilic methanogenic microflora was shifted from the acetotrophic Methanosaeta to the hydrogenotrophic Methanoculleus (85%) by tungsten, whereas the H2-CO2-converter, Methanothermobacter, always dominated in the thermophilic fermenters.

2019 ◽  
Vol 9 (9) ◽  
pp. 1791 ◽  
Author(s):  
Xiomara Gómez-Quiroga ◽  
Kaoutar Aboudi ◽  
Carlos José Álvarez-Gallego ◽  
Luis Isidoro Romero-García

In this paper, the viability of thermophilic anaerobic co-digestion of exhausted sugar beet pulp (ESBP) and pig manure (PM) was evaluated. The effect of the proportion of ESBP on biogas production was investigated by using a series of lab-scale batch assays, in duplicates. The following five ESBP:PM mixture ratios were studied: 0:100, 10:90, 25:75, 50:50, and 100:0. The highest cumulative methane production (212.4 mL CH4/g VSadded) was reached for the mixture 25:75. The experimental results showed that the increase in the proportion of ESBP in the mixture led to the distortion of the process, due to acidification by the volatile fatty acids generated. Acetic acid was the predominant acid in all the cases, representing more than 78% of the total acidity. Moreover, the results obtained by operating at thermophilic temperatures have been compared with those obtained in a previous study conducted at mesophilic temperatures. The results have shown that in the individual digestion of ESBP, the activity of acetoclastic methanogens was affected in both temperatures, but especially in thermophilic conditions. Thus, the methane produced in the individual thermophilic digestion of ESBP came almost entirely from the activity of hydrogen-utilizing methanogenic archaea.


2020 ◽  
pp. 0734242X2095739
Author(s):  
Abdul-Aziz Issah ◽  
Telesphore Kabera

The study assessed the impact of volatile fatty acids (VFA) to total alkalinity (TA) ratio (VFA/TA), and percentage volatile solids (VS) reduction of batch and semi-continuous anaerobic co-digestion of palm nut paste waste (PNPW) and anaerobic-digested rumen waste (ADRW) on digester stability and biogas production under the environmental condition of 50 ± 1°C and hydraulic retention time of 21 days for the batch studies and 14 days for semi-continuous co-digestion. The co-digestion ratios were based on percentage digester volume corresponding to 90%:10%, 75%:25% and 50%:50%. During batch and semi-continuous anaerobic co-digestion, VFA/TA of 0.32–1.0 and VS reduction of 53–67% were observed as the stable range at which biogas production was maximum. In terms of semi-continuous anaerobic digestion (AD), except for the 50%:50% ratio where biogas production progressed steadily from the first to fourteenth days, biogas production initially dropped from 180.1 to 171.3 mL between the first and third days of the 90%:10% reaching a maximum of 184 mL on the fourteenth day. Biogas production declined from 198.8 to 187.5 mL on the second day and then increased to 198.8 ± 0.5 mL in the case of the 75%:25% with a significant difference between the treatment ratios at p < 0.05. Therefore, the study can confirm that the 50%:50% ratio (PNPW:ADRW) is a suitable option for managing crude fat-based waste under thermophilic AD due to its potential for rapid start-up and complete biodegradation of active biomass within a 21-day period. This presupposes that residual methane as greenhouse gas will be void in the effluent if disposed of.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2213 ◽  
Author(s):  
Abiodun O. Jegede ◽  
Grietje Zeeman ◽  
Harry Bruning

Chinese dome digesters are usually operated at long hydraulic retention times (HRT) and low influent total solids (TS) concentration because of limited mixing. In this study, a newly optimised Chinese dome digester with a self-agitating mechanism was investigated at a pilot scale (digester volume = 500 L) and compared with a conventional Chinese dome digester (as blank) at 15% influent TS concentration at two retention times (30 and 40 days). The reactors were operated at ambient temperature: 27–33 °C. The average specific methane production, volatile fatty acids and percentage of volatile solids (VS) reduction are 0.16 ± 0.13 and 0.25 ± 0.05L CH4/g VS; 1 ± 0.5 and 0.7 ± 0.3 g/L; and 51 ± 14 and 57 ± 10% at 40 days HRT (day 52–136) for the blank and optimised digester, respectively. At 30 days HRT (day 137–309) the results are 0.19 ± 0.12 and 0.23 ± 0.04 L CH4/g VS; 1.2 ± 0.6 and 0.7 ± 0.3 g/L; and 51 ± 9 and 58 ± 11.6%. Overall, the optimised digester produced 40% more methane than the blank, despite the high loading rates applied. The optimised digester showed superior digestion treatment efficiency and was more stable in terms of VFA concentration than the blank digester, can be therefore operated at high influent TS (15%) concentration.


2011 ◽  
Vol 356-360 ◽  
pp. 2510-2514 ◽  
Author(s):  
Ming Fen Niu ◽  
Sai Yue Wang ◽  
Wen Di Xu ◽  
An Dong Ge ◽  
Hao Wang

In order to improve the rate of degradation of cellulose in corn straw, the study has an important significance that compost corn straw with inoculating high-efficient microbe agents. The experiment inoculated a cellulose-degrading strain F2 which was screened from compost into compost pretreatment, the VS of corn straw reduced from 93.14% to 71.69% after 15 days, the content of cellulose reduced from 34.12g·kg-1 to 25.66g·kg-1, the rate of degradation was 24.79% which was 10.60% higher than those without the strain. An anaerobic fermentation experiment was carried out with the two groups of composted corn straw and mixed pig feces with a certain ratio, and investigations of biogas production, pH, content of volatile fatty acids(VFA) and rate of methane production were conducted. The results were that the corn straw composted with the cellulose-degrading strain peaked 4 days earlier, the maximal daily biogas production was 1470mL, the cumulative biogas production reached 23641mL which was 16.87% higher and operated stably earlier. The study showed that the cellulose-degrading strain had a strong capacity to degrade cellulose in corn straw, and then improved the performance of anaerobic digestion.


2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


2015 ◽  
Vol 72 (8) ◽  
pp. 1398-1403 ◽  
Author(s):  
Glenda Cea-Barcia ◽  
Gloria Moreno ◽  
Germán Buitrón

The anaerobic digestion of mixed indigenous microalgae, grown in a secondary effluent, was evaluated in batch tests at mesophilic (35°C) and thermophilic (50°C) conditions. Under mesophilic conditions, specific methane production varied from 178 to 207 mL CH4/g volatile solids (VS) and the maximum production rate varied from 8.8 to 26.1 mL CH4/(gVS day), depending on the type of microalgae culture. Lower methane parameters were observed in those cultures where Scenedesmus represents more than 95% of the microalge. The culture with the lowest digestion performances under mesophilic conditions was studied under thermophilic conditions. The increase in the incubation temperature significantly increased the specific methane production (390 mL CH4/g VS) and rate (26.0 mL CH4/(gVS day)). However, under thermophilic conditions a lag period of 30 days was observed.


2018 ◽  
Vol 49 (2) ◽  
pp. 130-137
Author(s):  
Demetrio Antonio Zema ◽  
Giovanni Zappia ◽  
Souraya Benalia ◽  
Giuseppe Zimbalatti ◽  
Enzo Perri ◽  
...  

Experimental trials of anaerobic digestion of olive mill wastewater (OMW) blended with other agro-industrial by-products were carried out to evaluate biogas production and sensitivity of the process to inhibiting compounds. Blends containing different percentages of OMW, digested liquid manure, and citrus peel were subjected to a batch anaerobic digestion process under both mesophilic and thermophilic conditions. The results showed that blends with percentages of OMW higher than 20% (v/v) had low methane yields due high concentrations of polyphenols (PPs) and/or volatile fatty acids (concentrations above 0.8 g kg–1 and 2.4 g L–1, respectively). The addition of other substrates such as citrus peel may have induced synergic inhibiting effects of PPs and essential oils (EO) on microbial growth. Thermophilic processes were more sensitive to these inhibiting compounds than mesophilic processes. The results of this study suggest that reducing PPs and EO concentrations in blends subject to anaerobic digestion below the inhibiting concentrations of 0.6 g L–1 and 0.5 g kg–1, respectively, is suitable. Additionally, it is advisable to maintain the volatile fatty acids content below 2 g L–1 to avoid its evident toxic effects on the growth of microorganisms in biochemical processes.


2020 ◽  
pp. 0734242X2097509
Author(s):  
Uduak U Ndubuisi-Nnaji ◽  
Utibe A Ofon ◽  
Nnanake-Abasi O Offiong

Laboratory-scale bioreactors were used to co-digest spent coconut copra (SCC) and cow urine (CU) as a co-substrate (SCC + CU) in a batch mode under thermophilic condition (45 ± 2°C) in order to enhance biogas production. The effect of CU pretreatment on the performance indicators (biogas and biomethane yields, total solids (TS), and volatile solids (VS) reduction, pH and volatile fatty acids (VFAs) concentrations) were also examined. This was compared with mono-digestion of SCC. The experiment was performed with different mixing ratios in reactors labelled as follows: A = 75 g SCC + 5 ml CU; B = 70 g SCC + 10 ml CU; C = 65 g SCC + 15 ml CU; and D (control) = 80 g SCC at a hydraulic retention time of 42 days. Co-digestion (SCC + CU) significantly improved anaerobic digestion (AD) performance resulting in a threefold and fivefold increase in biogas and biomethane production, respectively, with concomitant TS (44.9–57.7%) and VS (55.4–60.3%) removal efficiencies. But for mono-digestion (control experiment), all CU treated and co-digestion assays showed pH stability ranging between 6.6 and 7.4 and VFAs’ concentrations ranging from 15–330 mgL-1. By acting as a buffer, CU effectively enhanced the AD performance of SCC as demonstrated in this study.


2021 ◽  
Author(s):  
GOKCE KURT ◽  
Rumeysa Doluk ◽  
Hulya Civelek Yoruklu ◽  
Ahmet Demir ◽  
Bestami Ozkaya

Abstract Bioenergy production from lignocellulosic biomass is challenging due to its structure and a pretreatment is required before methane production. In this study, biological pretreatment by using rumen microorganisms was applied for different types of lignocellulosic wastes: wheat straw, cotton stalk, reeds and sunflower stalk. The reactors were pretreated for 2, 5, 10, 15 and 20 days. After the pretreatment stages and gas measurements were done, reactors were separated into two phases as lower solid phase and upper liquid phase. The reactors were installed for the methanation stage, gas measurements were made at regular intervals and graphs were drawn using the cumulative results. Modified Gompertz equation was used to estimate potential biogas production. According to the results, the reactor containing 5 days pretreated wheat straw became prominent among the other reactors in terms of biogas and methane production with 163 ml and 102 ml, respectively. It was followed by 20 days pretreated reeds with 104 ml biogas and 80 ml methane, 2 days pretreated sunflower stalk with 88 ml biogas and 52 ml methane, and 2 days pretreated cotton stalk with 87 ml biogas and 50 ml methane.


2020 ◽  
Vol 10 (7) ◽  
pp. 2412
Author(s):  
Slawomir Kasinski

The objective of this study was to investigate the effect of process temperature on semi-continuous anaerobic digestion of the organic fraction separated during autoclaving of municipal waste. Tests were carried out in reactors with full mixing. Biogas production was higher in thermophilic conditions than in mesophilic conditions (0.92 L/g volatile solids at 55 °C vs. 0.42 L/g volatile solids at 37 °C, respectively). The resulting methane yields were 0.25-0.32 L CH4/g VS and 0.56–0.70 L CH4/g VS in mesophilic and thermophilic conditions, respectively. In both variants, the methane share was over 70% v/v. This work also discusses the potential impact of Maillard compounds on the efficiency of the fermentation process, which were probably produced during the process of autoclaving of municipal waste. These results indicate that, after autoclaving, the organic fraction of municipal waste can be an effective substrate for anaerobic digestion in thermophilic conditions.


Sign in / Sign up

Export Citation Format

Share Document