ribonuclease e
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 22 (22) ◽  
pp. 12260
Author(s):  
Daniel-Timon Spanka ◽  
Gabriele Klug

Small regulatory RNAs play a major role in bacterial gene regulation by binding their target mRNAs, which mostly influences the stability or translation of the target. Expression levels of sRNAs are often regulated by their own promoters, but recent reports have highlighted the presence and importance of sRNAs that are derived from mRNA 3′ untranslated regions (UTRs). In this study, we investigated the maturation of 5′ and 3′ UTR-derived sRNAs on a global scale in the facultative phototrophic alphaproteobacterium Rhodobacter sphaeroides. Including some already known UTR-derived sRNAs like UpsM or CcsR1-4, 14 sRNAs are predicted to be located in 5′ UTRs and 16 in 3′ UTRs. The involvement of different ribonucleases during maturation was predicted by a differential RNA 5′/3′ end analysis based on RNA next generation sequencing (NGS) data from the respective deletion strains. The results were validated in vivo and underline the importance of polynucleotide phosphorylase (PNPase) and ribonuclease E (RNase E) during processing and maturation. The abundances of some UTR-derived sRNAs changed when cultures were exposed to external stress conditions, such as oxidative stress and also during different growth phases. Promoter fusions revealed that this effect cannot be solely attributed to an altered transcription rate. Moreover, the RNase E dependent cleavage of several UTR-derived sRNAs varied significantly during the early stationary phase and under iron depletion conditions. We conclude that an alteration of ribonucleolytic processing influences the levels of UTR-derived sRNAs, and may thus indirectly affect their mRNA targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yewon Nam ◽  
Eunhye Goo ◽  
Yongsung Kang ◽  
Ingyu Hwang

The rice pathogen Burkholderia glumae uses amino acids as a principal carbon source and thus produces ammonia in amino acid-rich culture medium such as Luria–Bertani (LB) broth. To counteract ammonia-mediated environmental alkaline toxicity, the bacterium produces a public good, oxalate, in a quorum sensing (QS)-dependent manner. QS mutants of B. glumae experience alkaline toxicity and may undergo cell death at the stationary phase when grown in LB medium. Here, we show that the cell-death processes of QS mutants due to alkaline environmental conditions are similar to the apoptosis-like cell death reported in other bacteria. Staining QS mutants with bis-(1,3-dibutylbarbituric acid)-trimethine oxonol revealed membrane depolarization. CellROX™ staining showed excessive generation of reactive oxygen species (ROS) in QS mutants. The expression of genes encoding HNH endonuclease (BGLU_1G15690), oligoribonuclease (BGLU_1G09120), ribonuclease E (BGLU_1G09400), and Hu-beta (BGLU_1G13530) was significantly elevated in QS mutants compared to that in wild-type BGR1, consistent with the degradation of cellular materials as observed under transmission electron microscopy (TEM). A homeostatic neutral pH was not attainable by QS mutants grown in LB broth or by wild-type BGR1 grown in an artificially amended alkaline environment. At an artificially adjusted alkaline pH, wild-type BGR1 underwent apoptosis-like cell death similar to that observed in QS mutants. These results show that environmental alkaline stress interferes with homeostatic neutral cellular pH, induces membrane depolarization, and causes apoptosis-like cell death in B. glumae.


2021 ◽  
Author(s):  
Ute A. Hoffmann ◽  
Florian Heyl ◽  
Said N. Rogh ◽  
Thomas Wallner ◽  
Rolf Backofen ◽  
...  

Ribonucleases are crucial enzymes in RNA metabolism and post-transcriptional regulatory processes in bacteria. Cyanobacteria encode the two essential ribonucleases RNase E and RNase J. Cyanobacterial RNase E is shorter than homologues in other groups of bacteria and lacks both the chloroplast-specific N-terminal extension as well as the C-terminal domain typical for RNase E of enterobacteria. In order to investigate the function of RNase E in the model cyanobacterium Synechocystis sp. PCC 6803, we engineered a temperature-sensitive RNase E mutant by introducing two site-specific mutations, I65F and spontaneously occurring V94A. This enabled us to perform RNA-seq after the transient inactivation of RNase E by a temperature shift (TIER-seq) and to map 1,472 RNase-E-dependent cleavage sites. We inferred a dominating cleavage signature consisting of an adenine at the -3 and a uridine at the +2 position within a single-stranded segment of the RNA. The data identified putative RNase-E-dependent instances of operon discoordination, mRNAs likely regulated jointly by RNase E and an sRNA, potential 3' end-derived sRNAs and a dual-acting mechanism for the glutamine riboswitch. Our findings substantiate the pivotal role of RNase E in post-transcriptional regulation and suggest the redundant or concerted action of RNase E and RNase J in cyanobacteria.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Charlotte E. Mardle ◽  
Thomas J. Shakespeare ◽  
Louise E. Butt ◽  
Layla R. Goddard ◽  
Darren M. Gowers ◽  
...  

2017 ◽  
Vol 65 (1) ◽  
pp. 3-4 ◽  
Author(s):  
Joel G. Belasco
Keyword(s):  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Louise Kime ◽  
Helen A. Vincent ◽  
Deena M. A. Gendoo ◽  
Stefanie S. Jourdan ◽  
Colin W. G. Fishwick ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Louise Kime ◽  
Helen A. Vincent ◽  
Deena M. A. Gendoo ◽  
Stefanie S. Jourdan ◽  
Colin W. G. Fishwick ◽  
...  

Abstract The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5′-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E.


2014 ◽  
Vol 355 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Víctor Pérez-Medina Martínez ◽  
Gianni Dehò ◽  
Robert W. Simons ◽  
Jaime García-Mena

Author(s):  
Dietmar Schomburg ◽  
Ida Schomburg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document