scholarly journals Genome-Wide Annotation and Quantitation of Translation by Ribosome Profiling

2013 ◽  
pp. 4.18.1-4.18.19 ◽  
Author(s):  
Nicholas T. Ingolia ◽  
Gloria A. Brar ◽  
Silvia Rouskin ◽  
Anna M. McGeachy ◽  
Jonathan S. Weissman
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiho Makino ◽  
Tomoko Kawamata ◽  
Shintaro Iwasaki ◽  
Yoshinori Ohsumi

AbstractSynthesis and degradation of cellular constituents must be balanced to maintain cellular homeostasis, especially during adaptation to environmental stress. The role of autophagy in the degradation of proteins and organelles is well-characterized. However, autophagy-mediated RNA degradation in response to stress and the potential preference of specific RNAs to undergo autophagy-mediated degradation have not been examined. In this study, we demonstrate selective mRNA degradation by rapamycin-induced autophagy in yeast. Profiling of mRNAs from the vacuole reveals that subsets of mRNAs, such as those encoding amino acid biosynthesis and ribosomal proteins, are preferentially delivered to the vacuole by autophagy for degradation. We also reveal that autophagy-mediated mRNA degradation is tightly coupled with translation by ribosomes. Genome-wide ribosome profiling suggested a high correspondence between ribosome association and targeting to the vacuole. We propose that autophagy-mediated mRNA degradation is a unique and previously-unappreciated function of autophagy that affords post-transcriptional gene regulation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Audrey Montigny ◽  
Patrizia Tavormina ◽  
Carine Duboe ◽  
Hélène San Clémente ◽  
Marielle Aguilar ◽  
...  

Abstract Background Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. Results We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. Conclusion Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Puneet Sharma ◽  
Jie Wu ◽  
Benedikt S. Nilges ◽  
Sebastian A. Leidel

AbstractRibosome profiling measures genome-wide translation dynamics at sub-codon resolution. Cycloheximide (CHX), a widely used translation inhibitor to arrest ribosomes in these experiments, has been shown to induce biases in yeast, questioning its use. However, whether such biases are present in datasets of other organisms including humans is unknown. Here we compare different CHX-treatment conditions in human cells and yeast in parallel experiments using an optimized protocol. We find that human ribosomes are not susceptible to conformational restrictions by CHX, nor does it distort gene-level measurements of ribosome occupancy, measured decoding speed or the translational ramp. Furthermore, CHX-induced codon-specific biases on ribosome occupancy are not detectable in human cells or other model organisms. This shows that reported biases of CHX are species-specific and that CHX does not affect the outcome of ribosome profiling experiments in most settings. Our findings provide a solid framework to conduct and analyze ribosome profiling experiments.


2015 ◽  
Author(s):  
David E Weinberg ◽  
Premal Shah ◽  
Stephen W Eichhorn ◽  
Jeffrey A Hussmann ◽  
Joshua B Plotkin ◽  
...  

Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and codons matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a 10-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 5′- untranslated regions. Collectively, our results reveal key features of translational control in yeast and provide a framework for executing and interpreting ribosome- profiling studies.


2020 ◽  
Author(s):  
Lei Li ◽  
Yanjie Chao

ABSTRACTSmall proteins shorter than 50 amino acids have been long overlooked. A number of small proteins have been identified in several model bacteria using experimental approaches and assigned important functions in diverse cellular processes. The recent development of ribosome profiling technologies has allowed a genome-wide identification of small proteins and small ORFs (smORFs), but our incomplete understanding of small proteins hinders de novo computational prediction of smORFs in non-model bacterial species. Here, we have identified several sequence features for smORFs by a systematic analysis of all the known small proteins in E. coli, among which the translation initiation rate is the strongest determinant. By integrating these features into a support vector machine learning model, we have developed a novel sPepFinder algorithm that can predict conserved smORFs in bacterial genomes with a high accuracy of 92.8%. De novo prediction in E. coli has revealed several novel smORFs with evidence of translation supported by ribosome profiling. Further application of sPepFinder in 549 bacterial species has led to the identification of > 100,000 novel smORFs, many of which are conserved at the amino acid and nucleotide levels under purifying selection. Overall, we have established sPepFinder as a valuable tool to identify novel smORFs in both model and non-model bacterial organisms, and provided a large resource of small proteins for functional characterizations.


2017 ◽  
Vol 15 (5) ◽  
pp. 324-330 ◽  
Author(s):  
Yanqing Zhang ◽  
Zhengtao Xiao ◽  
Qin Zou ◽  
Jianhuo Fang ◽  
Qifan Wang ◽  
...  

BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 648 ◽  
Author(s):  
Jeroen Crappé ◽  
Wim Van Criekinge ◽  
Geert Trooskens ◽  
Eisuke Hayakawa ◽  
Walter Luyten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document