Forest restoration treatments have subtle long-term effects on soil C and N cycling in mixed conifer forests

2016 ◽  
Vol 26 (5) ◽  
pp. 1503-1516 ◽  
Author(s):  
Peter W. Ganzlin ◽  
Michael J. Gundale ◽  
Rachel E. Becknell ◽  
Cory C. Cleveland
2020 ◽  
Author(s):  
Jie Zhou ◽  
Yuan Wen ◽  
Lingling Shi ◽  
Michaela Dippold ◽  
Yakov Kuzyakov ◽  
...  

<p>The Paris climate agreement is pursuing efforts to limit the increase in global temperature to below 2 °C above pre-industrial level. The overall consequence of relatively slight warming (~2 °C), on soil C and N stocks will be dependent on microorganisms decomposing organic matter through release of extracellular enzymes. Therefore, the capacity of soil microbial community to buffer climate warming in long-term and the self-regulatory mechanisms mediating soil C and N cycling through enzyme activity and microbial growth require a detailed comparative study. Here, microbial growth and the dynamics of enzyme activity (involved in C and N cycling) in response to 8 years warming (ambient, +1.6 °C, +3.2 °C) were investigated to identify shifts in soil and microbial functioning. A slight temperature increase (+1.6 °C) only altered microbial properties, but had no effect on either hydrolytic enzyme activity or basic soil properties. Stronger warming (+3.2 °C) increased the specific growth rate (μ<sub>m</sub>) of the microbial community, indicating an alteration in their ecological strategy, i.e. a shift towards fast-growing microorganisms and accelerated microbial turnover. Warming strongly changed microbial physiological state, as indicated by a 1.4-fold increase in the fraction of growing microorganisms (GMB) and 2 times decrease in lag-time with warming. This reduced total microbial biomass but increased specific enzyme activity to be ready to decompose increased rhizodeposition, as supported by the higher potential activitiy (V<sub>max</sub>) and lower affinity to substrates (higher K<sub>m</sub>) of enzymes hydrolyzing cellobiose and proteins cleavage in warmed soil. In other words, stronger warming magnitude (+3.2 °C) changed microbial communities, and was sufficient to benefit fast-growing microbial populations with enzyme functions that specific to degrade labile SOM. Combining with 48 literature observations, we confirmed that the slight magnitude of temperature increase (< 2 °C) only altered microbial properties, but further temperature increases (2-4 °C) was sufficient to change almost all soil, microbial, and enzyme properties and related processes. As a consequence, the revealed microbial regulatory mechanism of stability of soil C storage is strongly depended on the magnitude of future climate warming.</p>


2010 ◽  
Vol 338 (1-2) ◽  
pp. 159-169 ◽  
Author(s):  
Roberta Gentile ◽  
Bernard Vanlauwe ◽  
Pauline Chivenge ◽  
Johan Six

2015 ◽  
Vol 21 (10) ◽  
pp. 3854-3863 ◽  
Author(s):  
Lourdes Morillas ◽  
Jorge Durán ◽  
Alexandra Rodríguez ◽  
Javier Roales ◽  
Antonio Gallardo ◽  
...  

2012 ◽  
Vol 92 (3) ◽  
pp. 449-461 ◽  
Author(s):  
R.L. Lemke ◽  
A.J. Vandenbygaart ◽  
C.A. Campbell ◽  
G.P. Lafond ◽  
B.G. McConkey ◽  
...  

Lemke, R. L., VandenBygaart, A. J., Campbell, C. A., Lafond, G. P., McConkey, B. G. and Grant, B. 2012. Long-term effects of crop rotations and fertilization on soil C and N in a thin Black Chernozem in southeastern Saskatchewan. Can. J. Soil Sci. 92: 449–461. Carbon sequestration in soil is important due to its influence on soil fertility and its impact on the greenhouse gas (GHG) phenomenon. Carbon sequestration is influenced by agronomic factors, but to what extent is still being studied. Long-term agronomic studies provide one of the best means of making such assessments. In this paper we discuss and quantify the effect of cropping frequency, fertilization, legume green manure (LGM) and hay crops in rotations, and tillage on soil organic carbon (SOC) changes in a thin Black Chernozemic fine-textured soil in southeastern Saskatchewan. This was based on a 50-yr (1958–2007) crop rotation experiment which was initiated on land that had previously been in fallow-wheat (Triticum aestivum L.) (F-W), or F-W-W receiving minimum fertilizer for the previous 50 yr. We sampled soil in 1987, 1996 (6 yr after changing from conventional tillage to no-tillage management and increasing N rates markedly) and again in 2007. The SOC (0–15 cm depth) in unfertilized F-W and F-W-W appears not to have changed from the assumed starting level, even after 20 yr of no-till, but SOC in unfertilized continuous wheat (Cont W) increased slightly [not significant (P>0.05)] in 30 yr, but increased more after 20 yr of no-till (but still not significant). No-till plus proper fertilization for 20 yr increased the SOC of F-W, F-W-W and Cont W in direct proportion to cropping frequency. The SOC in the LGM-W-W (unfertilized) system was higher than unfertilized F-W-W in 1987, but 20 yr of no-tillage had no effect, likely because grain yields and C inputs were depressed by inadequate available P. Soil organic carbon in the two aggrading systems [Cont W (N+P) and F-W-W-hay(H)-H-H (unfertilized)] increased significantly (P<0.05) in the first 30 yr; however, a further 20 yr of no-tillage (and increased N in the case of the Cont W) did not increase SOC suggesting that the SOC had reached a steady-state for this soil and management system. The Campbell model effectively simulated SOC changes except for Cont W(N+P), which it overestimated because the model is ineffective in simulating SOC in very fertile systems. After 50 yr, efficiency of conversion of residue C inputs to SOC was negligible for unfertilized F-W and F-W-W, was 3 to 4% for fertilized fallow-containing systems, was about 6 or 7% for Cont W, and about 11% for the unfertilized F-W-W-H-H-H systems.


2021 ◽  
Vol 211 ◽  
pp. 104995
Author(s):  
Giuseppe Badagliacca ◽  
Vito Armando Laudicina ◽  
Gaetano Amato ◽  
Luigi Badalucco ◽  
Alfonso Salvatore Frenda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document