Recruitment of TNF ligands to lipid rafts is mediated by their physical association with caveolin‐1

FEBS Letters ◽  
2021 ◽  
Author(s):  
Xenia A. Glukhova ◽  
Julia A. Trizna ◽  
Bogdan S. Melnik ◽  
Olga V. Proussakova ◽  
Igor P. Beletsky
2003 ◽  
Vol 44 (12) ◽  
pp. 5259 ◽  
Author(s):  
Dingbo Lin ◽  
Jianzheng Zhou ◽  
Peggy S. Zelenka ◽  
Dolores J. Takemoto

2012 ◽  
Vol 303 (9) ◽  
pp. R959-R967 ◽  
Author(s):  
Daniel W. Nuno ◽  
Sarah K. England ◽  
Kathryn G. Lamping

Vascular smooth muscle contraction occurs following an initial response to an increase in intracellular calcium concentration and a sustained response following increases in the sensitivity of contractile proteins to calcium (calcium sensitization). This latter process is regulated by the rhoA/rho kinase pathway and activated by serotonin. In multiple cell types, signaling molecules compartmentalize within caveolae to regulate their activation. We hypothesized that serotonin differentially compartmentalizes rhoA within caveolar versus noncaveolar lipid rafts to regulate sustained vascular contractions. To test this hypothesis, we measured aortic contractions in response to serotonin in wild-type (WT) and cav-1-deficient mice (cav-1 KO). RhoA-dependent contractions in response to serotonin were markedly augmented in arteries from cav-1 KO mice despite a modest reduction in rhoA expression compared with WT. We found that under basal conditions, rhoA in WT arteries was primarily localized within high-density sucrose gradient fractions but temporally shifted to low-density fractions in response to serotonin. In contrast, rhoA in cav-1 KO arteries was primarily in low-density fractions and shifted to high-density fractions in a similar timeframe as that seen in WT mice. We conclude that localization of rhoA to caveolar versus noncaveolar lipid rafts differentially regulates its activation and contractions to rhoA-dependent agonists with greater activation associated with its localization to noncaveolar rafts. Disruption of rhoA localization within caveolae may contribute to increased activation and enhanced vascular contractions in cardiovascular disease.


2008 ◽  
Vol 295 (5) ◽  
pp. G965-G976 ◽  
Author(s):  
Elena V. Vassilieva ◽  
Kirsten Gerner-Smidt ◽  
Andrei I. Ivanov ◽  
Asma Nusrat

Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of β1-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, β1-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent β1-integrin internalization. However, β1-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized β1-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased β1-integrin endocytosis. Our data suggest that, in migrating IEC, β1-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.


2009 ◽  
Vol 423 (3) ◽  
pp. 343-351 ◽  
Author(s):  
Julia Kiyan ◽  
Graham Smith ◽  
Hermann Haller ◽  
Inna Dumler

The cholesterol-enriched membrane microdomains lipid rafts play a key role in cell activation by recruiting and excluding specific signalling components of cell-surface receptors upon receptor engagement. Our previous studies have demonstrated that the GPI (glycosylphosphatidylinositol)-linked uPAR [uPA (urokinase-type plasminogen activator) receptor], which can be found in lipid rafts and in non-raft fractions, can mediate the differentiation of VSMCs (vascular smooth muscle cells) towards a pathophysiological de-differentiated phenotype. However, the mechanism by which uPAR and its ligand uPA regulate VSMC phenotypic changes is not known. In the present study, we provide evidence that the molecular machinery of uPAR-mediated VSMC differentiation employs lipid rafts. We show that the disruption of rafts in VSMCs by membrane cholesterol depletion using MCD (methyl-β-cyclodextrin) or filipin leads to the up-regulation of uPAR and cell de-differentiation. uPAR silencing by means of interfering RNA resulted in an increased expression of contractile proteins. Consequently, disruption of lipid rafts impaired the expression of these proteins and transcriptional activity of related genes. We provide evidence that this effect was mediated by uPAR. Similar effects were observed in VSMCs isolated from Cav1−/− (caveolin-1-deficient) mice. Despite the level of uPAR being significantly higher after the disruption of the rafts, uPA/uPAR-dependent cell migration was impaired. However, caveolin-1 deficiency impaired only uPAR-dependent cell proliferation, whereas cell migration was strongly up-regulated in these cells. Our results provide evidence that rafts are required in the regulation of uPAR-mediated VSMC phenotypic modulations. These findings suggest further that, in the context of uPA/uPAR-dependent processes, caveolae-associated and non-associated rafts represent different signalling membrane domains.


2009 ◽  
Vol 78 (2) ◽  
pp. 603-610 ◽  
Author(s):  
Shigeaki Matsuda ◽  
Toshio Kodama ◽  
Natsumi Okada ◽  
Kanna Okayama ◽  
Takeshi Honda ◽  
...  

ABSTRACT Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-β-cyclodextrin (MβCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MβCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca2+ influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1744-1744
Author(s):  
Vineet Awasthi ◽  
Samir Mandal ◽  
Veena Papanna ◽  
L. Vijaya Mohan Rao ◽  
Usha Pendurthi

Abstract Tissue factor (TF) is a cellular receptor for clotting factor VIIa (VIIa) and the formation of TF-VIIa complexes on cell surfaces not only triggers the coagulation cascade but also transduces cell signaling via activation of protease-activated receptors (PARs), particularly PAR2. Although a number of recent studies provide valuable information on intracellular signaling pathways that are activated by TF-VIIa, the role of various cell surface components in mediating the interaction of TF-VIIa with PARs, and the subsequent signal transmittance are unknown. Unlike thrombin and trypsin, VIIa has to bind to its cellular receptor (TF) to activate PARs. The inability of TF-VIIa to effectively activate Ca2+ signaling and failure to desensitize the signaling to subsequently added trypsin suggest that the TF-VIIa is a poor activator of PAR2. Despite this, a number of studies have shown that VIIa is as effective as trypsin or PAR2 agonist peptide in activating intracellular signaling pathways and gene expression in cells expressing TF. Although the potential mechanism for this phenomenon is unknown, compartmentalization of TF, PAR2, and G-proteins in plasma membrane microdomains could facilitate a robust TF-VIIa-induced PAR2-mediated cell signaling. Although certain G-protein coupled receptors and G-proteins are known to be segregated into specialized membrane microdomains, lipid rafts and caveolae, little is known whether PARs are segregated into lipid rafts and caveolae, and how such segregation might influence their activation by TF-VIIa and the subsequent coupling to G-proteins. To obtain answers to some of these questions, in the present study, we have characterized TF and PAR2 distribution on tumor cell surfaces and investigated the role of lipid raft/caveolae in modulating the TF-VIIa signaling in tumor cells. Detergent extraction of cells followed by fractionation on sucrose gradient centrifugation showed that TF and PAR2 were distributed both in lipid rafts (low-density) and soluble fractions. Immunofluorescence confocal microscopy revealed that TF at the cell surface is localized in discrete plasma membrane microdomains, and colocalized with caveolin-1, a structural integral protein of caveolae, indicating caveolar localization of TF. Similar to TF, PAR2 also displayed significant punctuate staining and colocalization with caveloin-1. Further, a substantial fraction of TF and PAR2 was colocalized in caveolae. Disruption of lipid rafts/caveolae by ß-methyl cyclodextrin or filipin treatments reduced TF association with PAR2 in lipid rafts and caveolar fractions and impaired the TF-VIIa-induced cell signaling (PI hydrolysis and IL-8 gene expression). Additional studies showed that both mßCD and filipin treatments specifically impaired TF-VIIa cleavage of PAR2 and but had no significant effect on trypsin cleavage of PAR2. Disruption of caveolae with caveolin-1 silencing had no effect on the TF-VIIa coagulant activity but inhibited the TF-VIIa-induced cell signaling. In summary, the data presented herein demonstrate that TF localization at the cell membrane could influence different functions of TF differently. While caveolar localization of TF had no influence in propagating the procoagulant activity of TF, it is essential in supporting the TF-VIIa-induced cell signaling.


2009 ◽  
Vol 380 (3) ◽  
pp. 489-492 ◽  
Author(s):  
B. Salani ◽  
L. Briatore ◽  
P. Contini ◽  
M. Passalacqua ◽  
E. Melloni ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document