Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter

2015 ◽  
Vol 42 (7) ◽  
pp. 2442-2448 ◽  
Author(s):  
Yueyue Yu ◽  
Rongcai Ren ◽  
Ming Cai
2015 ◽  
Vol 72 (8) ◽  
pp. 3214-3232 ◽  
Author(s):  
Yueyue Yu ◽  
Rongcai Ren ◽  
Ming Cai

Abstract This study investigates the dynamical linkage between the meridional mass circulation and cold air outbreaks using the ERA-Interim data covering the period 1979–2011. It is found that the onset date of continental-scale cold air outbreaks coincides well with the peak time of stronger meridional mass circulation events, when the net mass transport across 60°N in the warm or cold air branch exceeds ~88 × 109 kg s−1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6 × 109 kg s−1, most areas of the midlatitudes are generally in mild conditions except the northern part of western Europe. Composite patterns of circulation anomalies during stronger mass circulation events greatly resemble that of the winter mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air: namely, via East Asia and North America. The Siberian high shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through eastern Europe, where lies the poleward warm air route in the winter-mean condition. The strengthening of the Icelandic low and Azores high during stronger mass circulation events acts to close off the climatological-mean cold air route via western Europe; this is responsible for the comparatively normal temperature there. The composite pattern for weaker mass circulation events is generally reversed, where the weakening of the Icelandic low and Azores high, corresponding to the negative phase of the North Atlantic Oscillation (NAO), leads to the reopening and strengthening of the equatorward cold air route through western Europe, which is responsible for the cold anomalies there.


2015 ◽  
Vol 72 (1) ◽  
pp. 349-368 ◽  
Author(s):  
Yueyue Yu ◽  
Ming Cai ◽  
Rongcai Ren ◽  
Huug M. van den Dool

Abstract This study investigates dominant patterns of daily surface air temperature anomalies in winter (November–February) and their relationship with the meridional mass circulation variability using the daily Interim ECMWF Re-Analysis in 1979–2011. Mass circulation indices are constructed to measure the day-to-day variability of mass transport into the polar region by the warm air branch aloft and out of the polar region by the cold air branch in the lower troposphere. It is shown that weaker warm airmass transport into the upper polar atmosphere is accompanied by weaker equatorward advancement of cold air in the lower troposphere. As a result, the cold air is largely imprisoned within the polar region, responsible for anomalous warmth in midlatitudes and anomalous cold in high latitudes. Conversely, stronger warm airmass transport into the upper polar atmosphere is synchronized with stronger equatorward discharge of cold polar air in the lower troposphere, resulting in massive cold air outbreaks in midlatitudes and anomalous warmth in high latitudes. There are two dominant geographical patterns of cold air outbreaks during the cold air discharge period (or 1–10 days after a stronger mass circulation across 60°N). One represents cold air outbreaks in midlatitudes of both North America and Eurasia, and the other is the dominance of cold air outbreaks only over one of the two continents with abnormal warmth over the other continent. The first pattern mainly corresponds to the first and fourth leading empirical orthogonal functions (EOFs) of daily surface air temperature anomalies in winter, whereas the second pattern is related to the second EOF mode.


2021 ◽  
Author(s):  
Erik T. Smith ◽  
Scott Sheridan

Abstract Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through 2040, all five climate models show CAOs disappearing by 2054 based on current climate percentiles. Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s inability to simulate historical CAOs in these regions.


2016 ◽  
Vol 29 (6) ◽  
pp. 1999-2014 ◽  
Author(s):  
Jennifer Fletcher ◽  
Shannon Mason ◽  
Christian Jakob

Abstract A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.


2019 ◽  
Vol 76 (5) ◽  
pp. 1245-1264 ◽  
Author(s):  
Jinlong Huang ◽  
Wenshou Tian

Abstract This study analyzes the differences and similarities of Eurasian cold air outbreaks (CAOs) under the weak (CAOW), strong (CAOS), and neutral (CAON) stratospheric polar vortex states and examines the potential links between the polar vortex and Eurasian CAOs. The results indicate that the colder surface air temperature (SAT) over Europe in the earlier stages of CAOW events is likely because the amplitude of the preexisting negative North Atlantic Oscillation pattern is larger in CAOW events than in CAON and CAOS events. Marked by the considerably negative stratospheric Arctic Oscillation signals entering the troposphere, the SAT at midlatitudes over eastern Eurasia in CAOW events is colder than in CAON events. A larger diabatic heating rate related to a positive sensible heat flux anomaly in CAOW events likely offsets, to some degree, the cooling effect caused by the stronger cold advection and makes the differences in area-averaged SAT anomalies over northern Eurasia between the CAOW and CAON events look insignificant in most stages. Massive anomalous waves from the low-latitude western Pacific merge over northeastern Eurasia, then weaken the westerly wind over this region to create favorable conditions for southward advection of cold air masses in the earlier stages of all three types of CAOs. This study further analyzes the interannual relationship between the stratospheric polar vortex strength and the intensity of Eurasian CAOs and finds that climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) relative to the reanalysis dataset tend to underestimate the correlation between them. The relationship between them is strengthening under representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) scenarios over the period 2006–60. In addition, the intensity of Eurasian CAOs exhibits a decreasing trend in the past and in the future.


Sign in / Sign up

Export Citation Format

Share Document