scholarly journals Dynamic Linkage between Cold Air Outbreaks and Intensity Variations of the Meridional Mass Circulation

2015 ◽  
Vol 72 (8) ◽  
pp. 3214-3232 ◽  
Author(s):  
Yueyue Yu ◽  
Rongcai Ren ◽  
Ming Cai

Abstract This study investigates the dynamical linkage between the meridional mass circulation and cold air outbreaks using the ERA-Interim data covering the period 1979–2011. It is found that the onset date of continental-scale cold air outbreaks coincides well with the peak time of stronger meridional mass circulation events, when the net mass transport across 60°N in the warm or cold air branch exceeds ~88 × 109 kg s−1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6 × 109 kg s−1, most areas of the midlatitudes are generally in mild conditions except the northern part of western Europe. Composite patterns of circulation anomalies during stronger mass circulation events greatly resemble that of the winter mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air: namely, via East Asia and North America. The Siberian high shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through eastern Europe, where lies the poleward warm air route in the winter-mean condition. The strengthening of the Icelandic low and Azores high during stronger mass circulation events acts to close off the climatological-mean cold air route via western Europe; this is responsible for the comparatively normal temperature there. The composite pattern for weaker mass circulation events is generally reversed, where the weakening of the Icelandic low and Azores high, corresponding to the negative phase of the North Atlantic Oscillation (NAO), leads to the reopening and strengthening of the equatorward cold air route through western Europe, which is responsible for the cold anomalies there.

2016 ◽  
Vol 97 (8) ◽  
pp. 1475-1489 ◽  
Author(s):  
Ming Cai ◽  
Yueyue Yu ◽  
Yi Deng ◽  
Huug M. van den Dool ◽  
Rongcai Ren ◽  
...  

Abstract Extreme weather events such as cold-air outbreaks (CAOs) pose great threats to human life and the socioeconomic well-being of modern society. In the past, our capability to predict their occurrences has been constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as the pulse of the stratosphere (PULSE), can often be predicted with a useful degree of skill 4–6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in midlatitudes increases substantially above normal conditions within a short time period from 1 week before to 1–2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America during the 2013/14 winter. A real-time forecast experiment inaugurated in the winter of 2014/15 has given support to the idea that it is feasible to forecast CAOs 1 month in advance.


2015 ◽  
Vol 72 (1) ◽  
pp. 349-368 ◽  
Author(s):  
Yueyue Yu ◽  
Ming Cai ◽  
Rongcai Ren ◽  
Huug M. van den Dool

Abstract This study investigates dominant patterns of daily surface air temperature anomalies in winter (November–February) and their relationship with the meridional mass circulation variability using the daily Interim ECMWF Re-Analysis in 1979–2011. Mass circulation indices are constructed to measure the day-to-day variability of mass transport into the polar region by the warm air branch aloft and out of the polar region by the cold air branch in the lower troposphere. It is shown that weaker warm airmass transport into the upper polar atmosphere is accompanied by weaker equatorward advancement of cold air in the lower troposphere. As a result, the cold air is largely imprisoned within the polar region, responsible for anomalous warmth in midlatitudes and anomalous cold in high latitudes. Conversely, stronger warm airmass transport into the upper polar atmosphere is synchronized with stronger equatorward discharge of cold polar air in the lower troposphere, resulting in massive cold air outbreaks in midlatitudes and anomalous warmth in high latitudes. There are two dominant geographical patterns of cold air outbreaks during the cold air discharge period (or 1–10 days after a stronger mass circulation across 60°N). One represents cold air outbreaks in midlatitudes of both North America and Eurasia, and the other is the dominance of cold air outbreaks only over one of the two continents with abnormal warmth over the other continent. The first pattern mainly corresponds to the first and fourth leading empirical orthogonal functions (EOFs) of daily surface air temperature anomalies in winter, whereas the second pattern is related to the second EOF mode.


2021 ◽  
Author(s):  
Erik T. Smith ◽  
Scott Sheridan

Abstract Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through 2040, all five climate models show CAOs disappearing by 2054 based on current climate percentiles. Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s inability to simulate historical CAOs in these regions.


2016 ◽  
Vol 29 (6) ◽  
pp. 1999-2014 ◽  
Author(s):  
Jennifer Fletcher ◽  
Shannon Mason ◽  
Christian Jakob

Abstract A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.


Sign in / Sign up

Export Citation Format

Share Document