scholarly journals The role of thermal inertia in the representation of mean and diurnal range of surface temperature in semiarid and arid regions

2015 ◽  
Vol 42 (18) ◽  
pp. 7572-7580 ◽  
Author(s):  
S. Aït‐Mesbah ◽  
J. L. Dufresne ◽  
F. Cheruy ◽  
F. Hourdin
2017 ◽  
Vol 9 (8) ◽  
pp. 2906-2919 ◽  
Author(s):  
F. Cheruy ◽  
J. L. Dufresne ◽  
S. Aït Mesbah ◽  
J. Y. Grandpeix ◽  
F. Wang

2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


Icarus ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 366-369 ◽  
Author(s):  
James R. Zimbelman

2018 ◽  
Vol 22 (2) ◽  
pp. 1629-1648 ◽  
Author(s):  
Etienne Bresciani ◽  
Roger H. Cranswick ◽  
Eddie W. Banks ◽  
Jordi Batlle-Aguilar ◽  
Peter G. Cook ◽  
...  

Abstract. Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.


2019 ◽  
Vol 221 ◽  
pp. 210-224 ◽  
Author(s):  
Temesgen Alemayehu Abera ◽  
Janne Heiskanen ◽  
Petri Pellikka ◽  
Miina Rautiainen ◽  
Eduardo Eiji Maeda

2016 ◽  
Vol 12 (3) ◽  
pp. 677-695 ◽  
Author(s):  
Rima Rachmayani ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. Using the Community Climate System Model version 3 (CCSM3) including a dynamic global vegetation model, a set of 13 time slice experiments was carried out to study global climate variability between and within the Quaternary interglacials of Marine Isotope Stages (MISs) 1, 5, 11, 13, and 15. The selection of interglacial time slices was based on different aspects of inter- and intra-interglacial variability and associated astronomical forcing. The different effects of obliquity, precession, and greenhouse gas (GHG) forcing on global surface temperature and precipitation fields are illuminated. In most regions seasonal surface temperature anomalies can largely be explained by local insolation anomalies induced by the astronomical forcing. Climate feedbacks, however, may modify the surface temperature response in specific regions, most pronounced in the monsoon domains and the polar oceans. GHG forcing may also play an important role for seasonal temperature anomalies, especially at high latitudes and early Brunhes interglacials (MIS 13 and 15) when GHG concentrations were much lower than during the later interglacials. High- versus low-obliquity climates are generally characterized by strong warming over the Northern Hemisphere extratropics and slight cooling in the tropics during boreal summer. During boreal winter, a moderate cooling over large portions of the Northern Hemisphere continents and a strong warming at high southern latitudes is found. Beside the well-known role of precession, a significant role of obliquity in forcing the West African monsoon is identified. Other regional monsoon systems are less sensitive or not sensitive at all to obliquity variations during interglacials. Moreover, based on two specific time slices (394 and 615 ka), it is explicitly shown that the West African and Indian monsoon systems do not always vary in concert, challenging the concept of a global monsoon system on astronomical timescales. High obliquity can also explain relatively warm Northern Hemisphere high-latitude summer temperatures despite maximum precession around 495 ka (MIS 13). It is hypothesized that this obliquity-induced high-latitude warming may have prevented a glacial inception at that time.


2014 ◽  
Vol 57 (5) ◽  
Author(s):  
Nazario Tartaglione ◽  
Rodrigo Caballero

<p>This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.</p>


Sign in / Sign up

Export Citation Format

Share Document