scholarly journals Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: A regional circumpolar model study

2017 ◽  
Vol 122 (8) ◽  
pp. 6238-6253 ◽  
Author(s):  
Kazuya Kusahara ◽  
Guy D. Williams ◽  
Takeshi Tamura ◽  
Robert Massom ◽  
Hiroyasu Hasumi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


2002 ◽  
Vol 35 (3-4) ◽  
pp. 207-227 ◽  
Author(s):  
G Budillon ◽  
S Gremes Cordero ◽  
E Salusti

2017 ◽  
Vol 158 ◽  
pp. 103-118 ◽  
Author(s):  
Kazuya Kusahara ◽  
Guy D. Williams ◽  
Robert Massom ◽  
Phillip Reid ◽  
Hiroyasu Hasumi

2019 ◽  
Author(s):  
Yoshihiro Nakayama ◽  
Ralph Timmermann ◽  
Hartmut Hellmer

Abstract. Previous studies show accelerations of West Antarctic glaciers, implying that basal melt rates of these glaciers were previously small and increased in the middle of the 20th century. This enhanced melting is a likely source of the observed Ross Sea (RS) freshening, but its long-term impact on the Southern Ocean hydrography has never been investigated. Here, we conduct coupled sea-ice/ice-shelf/ocean simulations with different levels of ice shelf melting from West Antarctic glaciers. Freshening of RS shelf and bottom water is simulated with enhanced West Antarctic ice shelf melting, while no significant changes in shelf water properties are simulated when West Antarctic ice shelf melting is small. We further show that the freshening caused by glacial meltwater from ice shelves in the Amundsen and Bellingshausen Seas propagates further downstream along the East Antarctic coast into the Weddell Sea. Our experiments also show the timescales for the freshening signal to reach other regions around the Antarctic continent. The freshening signal propagates onto the RS continental shelf within a year of model simulation, while it takes roughly 5–10 years and 10–15 years to propagate into the region off Cape Darnley and into the Weddell Sea, respectively. This advection of freshening signal} possibly modulates the properties of dense shelf water and impacts the production of Antarctic Bottom Water.


Sign in / Sign up

Export Citation Format

Share Document