scholarly journals Sediment Transport of Fine Sand to Fine Gravel on Transverse Bed Slopes in Rotating Annular Flume Experiments

2018 ◽  
Vol 54 (1) ◽  
pp. 19-45 ◽  
Author(s):  
Anne W. Baar ◽  
Jaco de Smit ◽  
Wim S. J. Uijttewaal ◽  
Maarten G. Kleinhans
2012 ◽  
Vol 1 (33) ◽  
pp. 50 ◽  
Author(s):  
Le Phuong Dong ◽  
Shinji Sato

Prototype scale laboratory experiments have been conducted to investigate the sheetflow sediment transport of uniform sands under different skewed-asymmetric oscillatory flows. Experimental results reveal that in most of the case with fine sand, the “cancelling effect”, which balances the on-/off-shore net transport under pure asymmetric/skewed flows and results a moderate net transport, was developed for combined skewed-asymmetric flow. However, under some certain conditions (T > 5s) with coarse sands, the onshore sediment transport was enhanced by 50% under combined skewed-asymmetric flows. Sand transport mechanism under oscillatory sheetflow conditions is also studied by comparing the maximum bed shear stress and the phase lag parameter at each half cycle. A comparison of measurements including the new experimental data with a number of practical sand transport formulations shows that the Dong et al. (2013) formulation performs the best in predicting the measured net transport rates over a wide range of experimental conditions


2020 ◽  
Vol 90 (7) ◽  
pp. 687-700
Author(s):  
Jamie L. Hizzett ◽  
Esther J. Sumner ◽  
Matthieu J.B. Cartigny ◽  
Michael A. Clare

ABSTRACT Seafloor sediment density flows are the primary mechanism for transporting sediment to the deep sea. These flows are important because they pose a hazard to seafloor infrastructure and deposit the largest sediment accumulations on Earth. The cohesive sediment content of a flow (i.e., clay) is an important control on its rheological state (e.g., turbulent or laminar); however, how clay becomes incorporated into a flow is poorly understood. One mechanism is by the abrasion of (clay-rich) mud clasts. Such clasts are common in deep-water deposits, often thought to have traveled over large (more than tens of kilometers) distances. These long travel distances are at odds with previous experimental work that suggests that mud clasts should disintegrate rapidly through abrasion. To address this apparent contradiction, we conduct laboratory experiments using a counter rotating annular flume to simulate clast transport in sediment density flows. We find that as clay clasts roll along a sandy floor, surficial armoring develops and reduces clast abrasion and thus enhances travel distance. For the first time we show armoring to be a process of renewal and replenishment, rather than forming a permanent layer. As armoring reduces the rate of clast abrasion, it delays the release of clay into the parent flow, which can therefore delay flow transformation from turbidity current to debris flow. We conclude that armored mud clasts can form only within a sandy turbidity current; hence where armored clasts are found in debrite deposits, the parent flow must have undergone flow transformation farther up slope.


Soil Research ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 169 ◽  
Author(s):  
K. Stahr ◽  
J. Kühn ◽  
J. Trommler ◽  
K-H. Papenfuß ◽  
M. Zarei ◽  
...  

In the Oriola depression of Southern Portugal near the town of Evora, field examinations revealed the presence of Tertiary sedimentary deposits that had the consistency of duricrusts. These duricrusts, occurring close to the land surface, were examined in the field as well as in the laboratory, with the objective of establishing their composition and formation. Micromorphological examinations showed that the duricrusts were composed of clasts of fine sand to fine gravel sizes cemented together by a matrix dominated by either palygorskite or carbonate. The matrix : clasts ratio varied from about 1 : 3 when the cement was carbonate, to 3 : 1 or higher when the matrix was palygorskite. Occasionally the ratio in the latter was even higher. The clasts consisted of quartz, feldspar, and some Mg-rich metamorphic minerals. The palygorskite matrix fibres were arranged in mats within which they had parallel orientation. The mats or ‘domains’, which had a length of 15–25 □m and a width of about 40 □m, showed random orientation. In analogy to the term ‘calcrete’ the term ‘palycrete’ is used for the palygorskite duricrusts. The palycrete, of an average thickness of 0.5 m, frequently rested directly on the Hercynian basement rocks, and was covered by a recent solum. In the B horizons of the solum, the palygorskite appeared to undergo recent weathering and transformation into smectite. The duricrusts were proposed to have formed by authigenic calcite or palygorskite, which filled the interstices between clastic particles that had been deposited on Hercynian basement rocks following their peneplanation in the early Tertiary. The proposed environment of deposition and formation was that of an intermittent playa-lake in a semi-arid, seasonal climate, where strong evaporative processes had been active. Alteration and weathering of the mafic minerals contained in some of the clasts, in addition to interstitial solutions rich in Si and Mg, had created the chemical environment required for palygorskite neoformation. From the state of weathering–disintegration of the palygorskite in the soils formed on the palycrete, it is inferred that the environment for palygorskite neoformation had ceased to exist after palycrete formation.


2012 ◽  
Vol 34 (2) ◽  
pp. 41-50
Author(s):  
Adam Krupiński

Abstract The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project “Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment” launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and „transforming” mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.


2016 ◽  
Vol 4 (3) ◽  
pp. 685-703 ◽  
Author(s):  
Joel P. L. Johnson

Abstract. In most sediment transport models, a threshold variable dictates the shear stress at which non-negligible bedload transport begins. Previous work has demonstrated that nondimensional transport thresholds (τc*) vary with many factors related not only to grain size and shape, but also with characteristics of the local bed surface and sediment transport rate (qs). I propose a new model in which qs-dependent τc*, notated as τc(qs)*, evolves as a power-law function of net erosion or deposition. In the model, net entrainment is assumed to progressively remove more mobile particles while leaving behind more stable grains, gradually increasing τc(qs)* and reducing transport rates. Net deposition tends to fill in topographic lows, progressively leading to less stable distributions of surface grains, decreasing τc(qs)* and increasing transport rates. Model parameters are calibrated based on laboratory flume experiments that explore transport disequilibrium. The τc(qs)* equation is then incorporated into a simple morphodynamic model. The evolution of τc(qs)* is a negative feedback on morphologic change, while also allowing reaches to equilibrate to sediment supply at different slopes. Finally, τc(qs)* is interpreted to be an important but nonunique state variable for morphodynamics, in a manner consistent with state variables such as temperature in thermodynamics.


2021 ◽  
Vol 14 (2) ◽  
pp. 997
Author(s):  
Rogério Ribeiro Marinho ◽  
Antonio Fábio Sabbá Guimarães Vieira ◽  
Feliciano De Souza Maciel

O conhecimento das características físicas de sedimentos transportados por grandes sistemas fluviais possui significativa importância para o entendimento de processos geomorfológicos e hidrológicos. O nível de conhecimento dos grandes sistemas fluviais da Amazônia e sua relação com o transporte de sedimentos ainda é limitado, resultando em lacunas de conhecimento sobre a dinâmica da paisagem nesta complexa região. Este trabalho teve como objetivo avaliar a distribuição espacial da granulometria de sedimentos de fundo e suspenso do Rio Negro e tributários. Realizou-se análise da distribuição do tamanho dos sedimentos em seções amostrais localizadas no alto, médio e baixo curso do Rio Negro. Os resultados da análise granulométrica da carga de fundo indicam a predominância de sedimentos com tamanho variando de 0,25 a 1,0 mm (principalmente areia fina, areia média e areia grossa) enquanto no baixo curso as amostram oscilaram de areia fina a partículas lamosas (< 0,50 mm). No Rio Negro os sedimentos suspensos são compostos principalmente de partículas finas de silte (90% menor que 80 µm) com diâmetro mediano (D50) de 25 µm. As características granulométricas apresentadas neste trabalho fornecem subsídios para o entendimento de processos hidrodinâmicos de transporte e deposição dos sedimentos de fundo e suspenso neste gigante sistema fluvial.    Upstream-downstream Granulometry Analysis of bed and suspended sediments in the Negro River Basin (Amazon Basin, Brazil)A B S T R A C TThe knowledge of the physical characteristics of sediments transported by large river systems has significant importance for the understanding of geomorphological and hydrological processes. The level of knowledge of the large rivers of the Amazon basin and their relationship with sediment transport is limited, resulting in gaps about the dynamics of the landscape in this complex region. This article analyzes the spatial distribution of granulometry of bed and suspended sediments in the Negro River and tributaries. An analysis of the sediment size distribution was carried out in sample sections located in the upper, middle and lower reaches of the Negro River. The results of the granulometric analysis of the bed load indicate the predominance of sediments with sizes ranging from 0.25 to 1.0 mm (mainly fine sand, medium sand and coarse sand) while in the low course they showed oscillated from fine sand to muddy particles (<0.50 mm). In the Negro River basin the suspended sediments are composed mainly of fine silt particles (90% less than 80 µm) with a median diameter (D50) of 25 µm. The granulometric characteristics presented in this work provide subsidies for the understanding of hydrodynamic processes of transport and deposition of bed and suspended sediments in this huge fluvial system.Keywords: sediment transport, Amazon floodplain, multichannel river, anabranching


Sign in / Sign up

Export Citation Format

Share Document