Laboratory Maintenance of Flavobacterium psychrophilum and Flavobacterium columnare

Author(s):  
Kenneth D. Cain ◽  
Benjamin R. LaFrentz
2020 ◽  
Vol 139 ◽  
pp. 213-221
Author(s):  
C Birkett ◽  
R Lipscomb ◽  
T Moreland ◽  
T Leeds ◽  
JP Evenhuis

Flavobacterium columnare immersion challenges are affected by water-related environmental parameters and thus are difficult to reproduce. Whereas these challenges are typically conducted using flow-through systems, use of a recirculating challenge system to control environmental parameters may improve reproducibility. We compared mortality, bacterial concentration, and environmental parameters between flow-through and recirculating immersion challenge systems under laboratory conditions using 20 rainbow trout families. Despite identical dose concentration (1:75 dilution), duration of challenge, lot of fish, and temperature, average mortality in the recirculating system (42%) was lower (p < 0.01) compared to the flow-through system (77%), and there was low correlation (r = 0.24) of family mortality. Mean days to death (3.25 vs. 2.99 d) and aquaria-to-aquaria variation (9.6 vs. 10.4%) in the recirculating and flow-through systems, respectively, did not differ (p ≥ 0.30). Despite 10-fold lower water replacement rate in the recirculating (0.4 exchanges h-1) compared to flow-through system (4 exchanges h-1), differences in bacterial concentration between the 2 systems were modest (≤0.6 orders of magnitude) and inconsistent throughout the 21 d challenge. Compared to the flow-through system, dissolved oxygen during the 1 h exposure and pH were greater (p ≤ 0.02), and calcium and hardness were lower (p ≤ 0.03), in the recirculating system. Although this study was not designed to test effects of specific environmental parameters on mortality, it demonstrates that the cumulative effects of these parameters result in poor reproducibility. A recirculating immersion challenge model may be warranted to empirically identify and control environmental parameters affecting mortality and thus may serve as a more repeatable laboratory challenge model.


2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Hazuki Yamashita ◽  
Takayuki Wada ◽  
Yusuke Kato ◽  
Takuji Ikeda ◽  
Masayuki Imajoh

Flavobacterium psychrophilum is a Gram-negative, psychrophilic bacterium within the family Flavobacteriaceae. Here, we report the draft genome sequences of three F. psychrophilum strains isolated from skin ulcers of diseased ayu caught by tomozuri angling at three sites in the Kagami River in Japan.


Aquaculture ◽  
2021 ◽  
Vol 541 ◽  
pp. 736762
Author(s):  
Zijun Lu ◽  
Ren Gao ◽  
Yafei Duan ◽  
Rui Han ◽  
Wenjie Guo ◽  
...  

Author(s):  
Jillian K. Malecki ◽  
Luke A. Roy ◽  
Cova R. Arias ◽  
Miles D. Lange ◽  
Craig A. Shoemaker ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Anssi Karvonen ◽  
Ville Räihä ◽  
Ines Klemme ◽  
Roghaieh Ashrafi ◽  
Pekka Hyvärinen ◽  
...  

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mio Takeuchi ◽  
Erina Fujiwara-Nagata ◽  
Taiki Katayama ◽  
Hiroaki Suetake

AbstractRainbow trout fry syndrome (RTFS) and bacterial coldwater disease (BCWD) is a globally distributed freshwater fish disease caused by Flavobacterium psychrophilum. In spite of its importance, an effective vaccine is not still available. Manipulation of the microbiome of skin, which is a primary infection gate for pathogens, could be a novel countermeasure. For example, increasing the abundance of specific antagonistic bacteria against pathogens in fish skin might be effective to prevent fish disease. Here, we combined cultivation with 16S rRNA gene amplicon sequencing to obtain insight into the skin microbiome of the rainbow trout (Oncorhynchus mykiss) and searched for skin bacteria antagonistic to F. psychrophilum. By using multiple culture media, we obtained 174 isolates spanning 18 genera. Among them, Bosea sp. OX14 and Flavobacterium sp. GL7 respectively inhibited the growth of F. psychrophilum KU190628-78 and NCIMB 1947T, and produced antagonistic compounds of < 3 kDa in size. Sequences related to our isolates comprised 4.95% of skin microbial communities, and those related to strains OX14 and GL7 respectively comprised 1.60% and 0.17% of the skin microbiome. Comparisons with previously published microbiome data detected sequences related to strains OX14 and GL7 in skin of other rainbow trout and Atlantic salmon.


Sign in / Sign up

Export Citation Format

Share Document