River Types

2021 ◽  
pp. 9-17
Keyword(s):  
2000 ◽  
Vol 51 (2) ◽  
pp. 165 ◽  
Author(s):  
Peter C. Gehrke ◽  
John H. Harris

Riverine fish in New South Wales were studied to examine longitudinal trends in species richness and to identify fish communities on a large spatial scale. Five replicate rivers of four types (montane, slopes, regulated lowland and unregulated lowland) were selected from North Coast, South Coast, Murray and Darling regions. Fishwere sampled during summer and winter in two consecutive years with standardized gear that maximized the range of species caught. The composition of fish communities varied among regions and river types, with little temporal variation. Distinct regional communities converged in montane reaches and diverged downstream. The fish fauna can be classified into North Coast, South Coast, Murray and Darling communities, with a distinct montane community at high elevations irrespective of the drainage division. Species richness increased downstream in both North Coast and South Coast regions by both replacement and the addition of new species. In contrast, species richness in the Darling and Murray regions reached a maximum in the slopes reaches and then declined, reflecting a loss of species in lowland reaches. The small number of species is typical of the freshwater fish faunas of similar climatic regions world-wide. Fish communities identified in this study form logical entities for fisheries management consistent with the ecosystem-focused, catchment-based approach to river management and water reform being adopted in Australia.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
E. Rigon ◽  
J. Moretto ◽  
F. Delai ◽  
L. Picco ◽  
D. Ravazzolo ◽  
...  

The evaluation of the morphological quality of rivers is essential to define the level of alteration and for implementing future management strategies that consider also hazards related to fluvial processes and channel dynamics. This type of evaluation is particularly significant for the Italian rivers, that, as in many other European countries, have a very high level of human pressure. Recently, in Italy, the National Institute for Environmental Protection and Research has promoted a methodology named IDRAIM for hydromorphological analysis of streams that pursues an integrated approach aimed at a harmonized implementation of both the EU Water Framework Directive (WFD, 2000/60/EC), and the EU Floods Directive (2007/60/EC). In this paper we present the application of the Morphological Quality Index (MQI) protocol, which is part of IDRAIM, to determine the assessment of the morphological quality of the Cordevole River. The water network (only collectors greater than thirdorder were considered), has been divided, through GIS software, into 132 river reaches of homogeneous morphological characteristics, according to the first phase of the method. At this stage the semi-automatic calculation of lateral confinement (defined by “degree of confinement” and a “confinement index”) was tried, in order to reduce the implementing time. The application of 28 indicators was made for 42 reaches representing the major river types and human pressures in the site investigation. The results showed that 48% of the analyzed reaches have a very good or good quality status, 38% have a moderate morphological quality, while only 14% have the characteristics of poor or very poor quality. The main causes that lead to a strong alteration of the terms of reference are linked to i) poor connectivity between hillslopes and river corridor, that is very important for the natural supply of sediment and large wood; ii) absence of vegetation in the river corridor, that is functional to a range of geomorphic processes; iii) presence of artificial elements, particularly the bedload interception structures in the catchment, bank protection along the reach, and the removal of sediment, large wood and vegetation.


2017 ◽  
Vol 4 (1) ◽  
pp. 85 ◽  
Author(s):  
Zhipeng Lin ◽  
Le Chen ◽  
Jingfu Shan ◽  
Tan Zhang ◽  
Qianjun Sun ◽  
...  

Currently, the recognition and research on the classification of fluvial types mainly focus on the description and results of a series of indicators, such as the plane shape and sediment characteristics. However, there is limited literacy about how to demonstrate the fluvial types from the depositional process, especially less on sequence model of inland fluvial. Thus, this paper aims o propose a new kind of sequence stratigraphic framework, which is able to reflect the fluvial processes under the perspective of sequence stratigraphy. Accordingly, we use the principle of concrete analysis for concrete problems by comprehensively summing up the previous classification schemes of river types. With the research method of sedimentation process, new fluvial systems tracts for fluvial are presented here, including four parts: low fluvial system tract (LFST), advancing fluvial system tract (AFST), flooding fluvial system tract (FFST), receding fluvial system tract (RFST). Moreover, these could be applied to tackle the problem of the traditional division of fluvial. Various rivers have the different characteristics of systems tracts, then this may play a vital role in the discrimination of meandering river, braided river, anastomosing river and branched river. This study embodies the philosophical thought of Process Sedimentology and may contribute to revealing the deposition process of the fluvial system more profoundly from the aspect of genetic mechanism and evolution course. Most importantly, the fluvial classification system is definitely improved from the description stage to a complete rational stage.


2006 ◽  
Vol 54 (2) ◽  
pp. 133 ◽  
Author(s):  
A. J. Boulton ◽  
P. J. Hancock

Many rivers are classified as groundwater-dependent ecosystems (GDEs), owing to the contribution of groundwater to their base flow. However, there has been little explicit recognition of the way groundwater influences riverine biota or processes, how degrees of ecological dependency may vary, and the management implications of this dependency. The permeable beds and banks of these GDEs where surface water and groundwater exchange are termed ‘hyporheic zones’. They are often inhabited by invertebrates, with varying reliance on groundwater, although the ecological roles of these invertebrates are little known. Upwelling hyporheic water can promote surface primary productivity, influence sediment microbial activity, and affect organic matter decomposition. In many intermittent streams, variable groundwater inputs alter the duration of flow or water permanence, and the duration and timing of these largely govern the biota and rates of many ecosystem processes (e.g. leaf decomposition). Not only is the physical presence of water important, thermal and chemical conditions arising from groundwater inputs also have direct and indirect effects on riverine biota and rates or types of in-stream processes. Differing degrees of dependency of rivers on groundwater mediate all these influences, and may change over time and in response to human activities. Alteration of groundwater inputs through extraction from riparian wells or changes in local water table have an impact on these GDEs, and some current management plans aim to restrict groundwater extraction from near permeable river channels. However, these are often ‘blanket’ restrictions and the mechanisms of GDE dependency or timing of groundwater requirements are poorly understood, hampering refinement of this management approach. More effective management of these GDEs into the future can result only from a better understanding of the mechanisms of the dependency, how these vary among river types and what in-stream changes might be predicted from alteration of groundwater inputs.


2003 ◽  
Vol 34 (3) ◽  
pp. 203-220 ◽  
Author(s):  
Pirkko Kauppila ◽  
Jari Koskiaho

Estimation of pollutant fluxes through river systems calls for accurate and precise load estimation. However, considerable uncertainty is associated with these estimates due to diffuse loading, which sets high requirements not only on sampling frequencies but also on calculation methods. The aim was to examine the variation in load calculations and the reliability of the load estimates of total phosphorus, total nitrogen and suspended solids in 24 Baltic rivers varying in size and land-use characteristics. Reliability of the load estimates was tested by simulation experiments in the river Paimionjoki using a Monte Carlo procedure. The estimates calculated by the most reliable method were compared to the loads estimated by five other methods. The general reliability (RMSE) for P and SS was best by the correlation method and for N by the periodic method. Load calculations varied greatly depending both on the characteristics of the rivers and the calculation method. The flow-stratified method overestimated the P and SS loads by about 20% in large low-lake rivers. In small low-lake rivers, the overestimation was 10% and over 14% for P and SS, respectively. By contrast, the averaging method underestimated P and SS loads by 10% and 21% in small agricultural low-lake rivers. All the methods produced rather similar results for N in each of the river types.


Limnologica ◽  
2018 ◽  
Vol 71 ◽  
pp. 29-43 ◽  
Author(s):  
Kateřina Kujanová ◽  
Milada Matoušková ◽  
Zdeněk Hošek

2002 ◽  
Vol 2 ◽  
pp. 607-617 ◽  
Author(s):  
Tom P. D’heygere ◽  
Peter L.M. Goethals ◽  
Niels De Pauw

The Dender basin in Flanders (Belgium) was used as a case study to implement the European Union (EU) Water Framework Directive. During the last 5 years, ample research on pollution loads and ecological water quality has been done on the Dender River. In addition to biological sampling of macroinvertebrates and fish, automated measurement stations were also used to investigate the spatial-temporal variability of the physical-chemical water quality. This research revealed that the pollution of the Dender River is highly variable. The high nutrient loads result in severe algae blooms during summer, leading to very complex diurnal processes. In this paper, the monitoring strategy for the assessment of the biological water quality in the Dender basin has been reviewed in relation to the EU Water Framework Directive. For this, seasonal macroinvertebrate data were collected and assessed. General trends and hidden structures in these data were analysed by means of classification trees, using different inputs (seasons, river types, and subbasins). Validation of the results was obtained by applying statistical methods. Analysis about the presence and abundance of the macroinvertebrates revealed that there is a distinct difference between the biological water quality in the Dender stem river and its tributaries. There are also seasonal differences between the macroinvertebrate communities when the Dender and its tributaries are examined separately. An optimised monitoring strategy is proposed based on these results and the EU Water Framework Directive. This includes two monitoring campaigns in summer and winter every 3 years. Furthermore, a cyclic monitoring scheme was developed to minimise sampling efforts.


2017 ◽  
Vol 17 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Cédric Laizé ◽  
Mike Acreman ◽  
Ian Overton
Keyword(s):  

2012 ◽  
Vol 9 (3) ◽  
pp. 4045-4071 ◽  
Author(s):  
D. Fernández ◽  
J. Barquín ◽  
M. Álvarez-Cabria ◽  
F. J. Peñas

Abstract. Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC), while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance). As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment). Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score) and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that best match with the 50-yr flood. Results have shown that the BFDAC approach obtains an adjustment slightly better than that of path distance. However, BFDAC requires bankfull depth regional regressions along the considered river network. Results have also confirmed that unconstrained valleys require lower threshold values than constrained valleys when deriving surfaces using geomorphological criteria. Moreover, this study provides: (i) guidance on the selection of the proper geomorphological criterion and associated threshold values, and (ii) an easy calibration framework to evaluate the adjustment with respect to hydrologically-meaningful surfaces.


Sign in / Sign up

Export Citation Format

Share Document