High-Order Effect and Nonlocal Behavior

2014 ◽  
pp. 425-490
2011 ◽  
Vol 383-390 ◽  
pp. 6846-6850
Author(s):  
Zhuo Ma ◽  
Li Luo ◽  
Yang Guo ◽  
Lun Guo Xie ◽  
Ji Hua Chen

In this thesis, a kind of jitter is focused on, which is called Native Jitter (NJ) of the Voltage Controlled Oscillator (VCO). The cause of NJ is the high order effect of the transistor itself in the VCO, and almost has no correlation with the control voltage or supply. The detailed analysis of the cause and the evaluation of this NJ is proposed in this paper, and an Inter-locked Dual-loop VCO (ID-VCO) is put forward, in which most of the NJ is eliminated. A test chip of the ID-VCO based on 0.18μm CMOS process is established. Compared with the classical single end VCO, the result shows that the peak to peak value and mean-root-square values of period jitter reduce 15.4% and 16.3%, the same values of cycle-to-cycle jitter reduce 9.82% and 6.98%, respectively.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Wai-Ki Ching ◽  
Tak-Kuen Siu ◽  
Li-Min Li

We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM). We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Author(s):  
C. M. Sung ◽  
D. B. Williams

Researchers have tended to use high symmetry zone axes (e.g. <111> <114>) for High Order Laue Zone (HOLZ) line analysis since Jones et al reported the origin of HOLZ lines and described some of their applications. But it is not always easy to find HOLZ lines from a specific high symmetry zone axis during microscope operation, especially from second phases on a scale of tens of nanometers. Therefore it would be very convenient if we can use HOLZ lines from low symmetry zone axes and simulate these patterns in order to measure lattice parameter changes through HOLZ line shifts. HOLZ patterns of high index low symmetry zone axes are shown in Fig. 1, which were obtained from pure Al at -186°C using a double tilt cooling holder. Their corresponding simulated HOLZ line patterns are shown along with ten other low symmetry orientations in Fig. 2. The simulations were based upon kinematical diffraction conditions.


Author(s):  
J. M. Zuo ◽  
A. L. Weickenmeier ◽  
R. Holmestad ◽  
J. C. H. Spence

The application of high order reflections in a weak diffraction condition off the zone axis center, including those in high order laue zones (HOLZ), holds great promise for structure determination using convergent beam electron diffraction (CBED). It is believed that in this case the intensities of high order reflections are kinematic or two-beam like. Hence, the measured intensity can be related to the structure factor amplitude. Then the standard procedure of structure determination in crystallography may be used for solving unknown structures. The dynamic effect on HOLZ line position and intensity in a strongly diffracting zone axis is well known. In a weak diffraction condition, the HOLZ line position may be approximated by the kinematic position, however, it is not clear whether this is also true for HOLZ intensities. The HOLZ lines, as they appear in CBED patterns, do show strong intensity variations along the line especially near the crossing of two lines, rather than constant intensity along the Bragg condition as predicted by kinematic or two beam theory.


2003 ◽  
Vol 50 (3-4) ◽  
pp. 375-386
Author(s):  
D. B. MilosÕeviĆ ◽  
W. Becker

Sign in / Sign up

Export Citation Format

Share Document