Bacterial Cellulose Nanofibers for Efficient Removal of Hg2+ from Aqueous Solutions

Author(s):  
Emel Tamahkar ◽  
Emel Tamahkar ◽  
Deniz Türkmen ◽  
Semra Akgönüllü ◽  
Tahira Qureshi ◽  
...  
Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3725-3731
Author(s):  
Juan Huang ◽  
Weirong Cui ◽  
Ruping Liang ◽  
Li Zhang ◽  
Jianding Qiu

Novel porous BMTTPA–CS–GO nanocomposites are prepared by covalently grafting BMTTPA–CS onto GO surfaces, and used for efficient removal of heavy metal ions from polluted water.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 567 ◽  
Author(s):  
Željka Fiket ◽  
Ana Galović ◽  
Gordana Medunić ◽  
Martina Furdek Turk ◽  
Maja Ivanić ◽  
...  

Rare earth elements, i.e., lanthanides, are important components of many recently developed technology applications. However, their increasing use in the industrial sector, medicine, and agriculture over the last few decades has provided them with the title of “new pollutants”. Different methods are now applied for the removal of various pollutants from wastewaters, whereby the emphasis is placed on adsorption due to its simplicity, high efficiency, and low cost. In the present study, geopolymers prepared from coal ash were examined regarding their capacity for the adsorption of lanthanides from model solutions. The obtained results indicate the efficient removal of lanthanides by prepared geopolymers, depicting them as effective adsorbents for this group of elements.


2007 ◽  
Vol 8 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Shinsuke Ifuku ◽  
Masaya Nogi ◽  
Kentaro Abe ◽  
Keishin Handa ◽  
Fumiaki Nakatsubo ◽  
...  

2014 ◽  
Vol 35 (12) ◽  
pp. 1508-1519 ◽  
Author(s):  
A. Blanco-Flores ◽  
A. Colín-Cruz ◽  
E. Gutiérrez-Segura ◽  
V. Sánchez-Mendieta ◽  
D.A. Solís-Casados ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document