scholarly journals Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration

2015 ◽  
pp. 4623 ◽  
Author(s):  
Yudong Zheng ◽  
Xiaoxiao Wen ◽  
Jian Wu ◽  
Lu-Ning Wang ◽  
Zhenya Yuan ◽  
...  
2007 ◽  
Vol 330-332 ◽  
pp. 923-926 ◽  
Author(s):  
Hong Jiang Jiang ◽  
Yu Ling Wang ◽  
Shi Ru Jia ◽  
Yuan Huang ◽  
Fang He ◽  
...  

The surfaces of BC (bacterial cellulose) nanofibers are covered with homogeneous nano-sized precipitates upon exposure to SBF. The characteristics of the nanocompoiste scaffolds are characterized by XRD, FTIR, TEM and SEM. It is believed that the the HAp/BC nanocomposite scaffold are promising in applications of bone tissue engineering.


2018 ◽  
Vol 38 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Honglin Luo ◽  
Wei Li ◽  
Zhiwei Yang ◽  
Haiyong Ao ◽  
Guangyao Xiong ◽  
...  

AbstractNanofiber alignment in tissue engineering scaffolds is a crucial factor controlling the cell behavior. In this work, we report a facile approach to obtain aligned nanofibers of bacterial cellulose (BC) by forcing the culture medium of bacteria to flow along a fixed direction. The emphasis of this work was placed on the effect of flowing velocity on the alignment of the as-prepared oriented BC (OBC). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses indicated that the velocity affected the crystallinity and thermal stability of BC while the chemical structure did not change with the velocity. The controllable alignment of BC nanofibers makes them a promising material for the construction of biomimetic scaffolds for tissue engineering and regenerative medicine.


Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


2021 ◽  
Vol 22 (7) ◽  
pp. 3346
Author(s):  
Agata Sommer ◽  
Paulina Dederko-Kantowicz ◽  
Hanna Staroszczyk ◽  
Sławomir Sommer ◽  
Marek Michalec

This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed—resulting in increased thermal stability and crystallinity of the material. The C2–C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups’ formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.


2015 ◽  
Vol 2 (1) ◽  
pp. 19-29 ◽  
Author(s):  
XiangGuo Lv ◽  
JingXuan Yang ◽  
Chao Feng ◽  
Zhe Li ◽  
ShiYan Chen ◽  
...  

2007 ◽  
Vol 8 (6) ◽  
pp. 1973-1978 ◽  
Author(s):  
Shinsuke Ifuku ◽  
Masaya Nogi ◽  
Kentaro Abe ◽  
Keishin Handa ◽  
Fumiaki Nakatsubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document