scholarly journals Atomic plane resolution EMCD measurement by STEM-EELS under 3-beam diffraction condition

Author(s):  
Jan Rusz ◽  
Shunsuke Muto ◽  
Jakob Spiegelberg ◽  
Roman Adam ◽  
Daniel E. Bürgler ◽  
...  
2020 ◽  
Vol 117 (9) ◽  
pp. 092102 ◽  
Author(s):  
Yongzhao Yao ◽  
Yoshiyuki Tsusaka ◽  
Yukari Ishikawa ◽  
Yoshihiro Sugawara ◽  
Yu Fujita ◽  
...  

Microscopy ◽  
2015 ◽  
Vol 64 (suppl 1) ◽  
pp. i16.2-i16
Author(s):  
Shunsuke Muto ◽  
Jan Rusz ◽  
Jakob Spiegelberg ◽  
Kazuyoshi Tatsumi

Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Author(s):  
H. M. Thieringer

It has repeatedly been show that with conventional electron microscopes very fine electron probes can be produced, therefore allowing various micro-techniques such as micro recording, X-ray microanalysis and convergent beam diffraction. In this paper the function and performance of an SIEMENS ELMISKOP 101 used as a scanning transmission microscope (STEM) is described. This mode of operation has some advantages over the conventional transmission microscopy (CTEM) especially for the observation of thick specimen, in spite of somewhat longer image recording times.Fig.1 shows schematically the ray path and the additional electronics of an ELMISKOP 101 working as a STEM. With a point-cathode, and using condensor I and the objective lens as a demagnifying system, an electron probe with a half-width ob about 25 Å and a typical current of 5.10-11 amp at 100 kV can be obtained in the back focal plane of the objective lens.


Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


Author(s):  
Judith M. Brock ◽  
Max T. Otten ◽  
Marc. J.C. de Jong

A Field Emission Gun (FEG) on a TEM/STEM instrument provides a major improvement in performance relative to one equipped with a LaB6 emitter. The improvement is particularly notable for small-probe techniques: EDX and EELS microanalysis, convergent beam diffraction and scanning. The high brightness of the FEG (108 to 109 A/cm2srad), compared with that of LaB6 (∼106), makes it possible to achieve high probe currents (∼1 nA) in probes of about 1 nm, whilst the currents for similar probes with LaB6 are about 100 to 500x lower. Accordingly the small, high-intensity FEG probes make it possible, e.g., to analyse precipitates and monolayer amounts of segregation on grain boundaries in metals or ceramics (Fig. 1); obtain high-quality convergent beam patterns from heavily dislocated materials; reliably detect 1 nm immuno-gold labels in biological specimens; and perform EDX mapping at nm-scale resolution even in difficult specimens like biological tissue.The high brightness and small energy spread of the FEG also bring an advantage in high-resolution imaging by significantly improving both spatial and temporal coherence.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


Author(s):  
U. Dahmen ◽  
K.H. Westmacott

Despite the increased use of convergent beam diffraction, symmetry concepts in their more general form are not commonly applied as a practical tool in electron microscopy. Crystal symmetry provides an abundance of information that can be used to facilitate and improve the TEM analysis of crystalline solids. This paper draws attention to some aspects of symmetry that can be put to practical use in the analysis of structures and morphologies of two-phase materials.It has been shown that the symmetry of the matrix that relates different variants of a precipitate can be used to determine the axis of needle- or lath-shaped precipitates or the habit plane of plate-shaped precipitates. By tilting to a special high symmetry orientation of the matrix and by measuring angles between symmetry-related variants of the precipitate it is possible to find their habit from a single micrograph.


Author(s):  
J. M. Zuo ◽  
A. L. Weickenmeier ◽  
R. Holmestad ◽  
J. C. H. Spence

The application of high order reflections in a weak diffraction condition off the zone axis center, including those in high order laue zones (HOLZ), holds great promise for structure determination using convergent beam electron diffraction (CBED). It is believed that in this case the intensities of high order reflections are kinematic or two-beam like. Hence, the measured intensity can be related to the structure factor amplitude. Then the standard procedure of structure determination in crystallography may be used for solving unknown structures. The dynamic effect on HOLZ line position and intensity in a strongly diffracting zone axis is well known. In a weak diffraction condition, the HOLZ line position may be approximated by the kinematic position, however, it is not clear whether this is also true for HOLZ intensities. The HOLZ lines, as they appear in CBED patterns, do show strong intensity variations along the line especially near the crossing of two lines, rather than constant intensity along the Bragg condition as predicted by kinematic or two beam theory.


Sign in / Sign up

Export Citation Format

Share Document