liquid hourly space velocity

Author(s):  
C.‐D. Frohning
2017 ◽  
Vol 68 (7) ◽  
pp. 1496-1500
Author(s):  
Rami Doukeh ◽  
Mihaela Bombos ◽  
Ancuta Trifoi ◽  
Minodora Pasare ◽  
Ionut Banu ◽  
...  

Hydrodesulphurization of dimethyldisulphide was performed on Ni-Co-Mo /�-Al2O3 catalyst. The catalyst was characterized by determining the adsorption isotherms, the pore size distribution and the acid strength. Experiments were carried out on a laboratory echipament in continuous system using a fixed bed catalytic reactor at 50-100�C, pressure from 10 barr to 50 barr, the liquid hourly space velocity from 1h-1 to 4h-1 and the molar ratio H2 / dimethyldisulphide 60/1. A simplified kinetic model based on the Langmuir�Hinshelwood theory, for the dimethyldisulphide hydrodesulfurization process of dimethyldisulphide has been proposed. The results show the good accuracy of the model.


2011 ◽  
Vol 396-398 ◽  
pp. 764-767
Author(s):  
Tai Xuan Jia ◽  
Ji Chang Zhang ◽  
Zi Li Liu

Y-Mg-Al-layered double Oxides (Y-Mg-Al-LDO) were prepared by calcining Y3+-doped Mg-Al-layered hydrotalcites at 823 K for 8 h from co-precipitation method. The samples were detected by XRD and CO2-TPD. Micro-structure and essential regularity were disclosed. The acetone condensation reaction as a probe reaction was carried on fixed-bed micro-reactor at reactive temperature 673 K, reactive time 3 h and liquid hourly space velocity (LHSV) 6 h-1 over Y-Mg-Al-LDO. The catalyst evaluation results show that Y-Mg-Al-LDO possess high catalytic activity. The maximum value of acetone conversion reached 37.53%. The selectivity and single-pass-yield of isophorone were 55.66% and 20.89%, respectively.


2017 ◽  
Vol 68 (1) ◽  
pp. 35-39
Author(s):  
Raluca Elena Dragomir ◽  
Paul Rosca ◽  
Traian Juganaru

This paper presents options for increasing production of diesel fuel in a refinery by FCC light cycle oil (LCO) hydrotreating together with the straight run gas oil (SRGO). The experiments consist of hydrotreating mixtures of 10, 20% LCO and 90% and respectively 80% SRGO at 360, 380�C, two liquid hourly space velocity 0.9 h-1, 1.2 h-1, pressure 50 bar in the presence of two industrial catalyst type Co/Mo and NiMo. The research has focused on the influence of LCO/SRGO ratio, type of catalyst and hydrotreating conditions on diesel fuel quality compared with characteristics required by standard EN 590.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3196 ◽  
Author(s):  
Praepilas Dujjanutat ◽  
Arthit Neramittagapong ◽  
Pakawadee Kaewkannetra

In this work, hydro-processing was used as an alternative route for producing bio-hydrogenated kerosene (BHK) from refined bleached deodorized palm oil (RPO) in the presence of a 0.5 wt% Pd/Al2O3 catalyst. The Box-Behnken Design was used to determine the effects of reaction temperature, H2 pressure, and reaction time in terms of liquid hourly space velocity (LHSV) on BHK production. The kerosene selectivity was used as the response for staticial interpretation. The results show that both temperature and LHSV produced significant effects, whereas H2 pressure did not. The optimal conditions were found to be 483 °C, 5.0 MPa, and 1.4 h−1 LHSV; these conditions provided approximately 57.30% kerosene selectivity and a 47.46% yield. The BHK product had a good heating value and flash point. However, the mass percentage of carbon and hydrogen was 99.1%, which is just below the minimum standard (99.5%), according to the carbon loss by the reaction pathway to form as CO and CO2. Water can be produced from the reaction induced by oxygen removal, which results in a high freezing point.


2011 ◽  
Vol 7 (1) ◽  
pp. 26
Author(s):  
Yusnitati Yusnitati ◽  
Muhammad Hanif ◽  
M Faizal

Minyak batubara cair dengan titik didih 70-360oC, diperoleh dari proses pencairan batubara Tanito Harum menggunakan NEDOL Process skala pilot berkapasitas 150 ton/hari. Minyak batubara cair tersebut diupgrade untuk mengklarifikasi pengaruh temperatur reaksi, tekanan hidrogen, dan liquid hourly space velocity (LHSV) terhadap aktifitas hidrodenitrogenasi. Pengujian dilakukan dalam reactor fixed bed kontinyu berdiameter 8.5 mm menggunakan katalis Ni- W/Alumina pada temperatur 300-375oC, tekanan hidrogen 8-12 MPa, LHSV 0.75-3.0 hr-1 dan rasio hydrogen/oil 1000 NL/L. Hasil pengujian menunjukkan bahwa aktifitas hidrodenitrogenasi meningkat dengan peningkatan temperature reaksi dan tekanan hidrogen. Pada tekanan hidrogen 8 MPa, deaktifasi katalis terjadi lebih cepat dibandingkan dengan tekanan hydrogen 12 MPa selama 15 hari waktu operasi. Selain itu, ditunjukkan pula bahwa pada operasi dengan LHSV yang lebih rendah dan tekanan hidrogen yang lebih tinggi akan lebih efektif untuk menurunkan atau menghilangkan senyawa nitrogen dalam proses upgrading minyak batubara cair. Sehingga, operasi pada tekanan hidrogen 12 MPa diharapkan dapat menghasilkan produk minyak batubara cair dengan kandungan nitrogen yang rendah untuk waktu operasi lebih dari satu tahun pada skala komersial. Kata Kunci: hidrodenitrogenasi, katalis Ni-W/Alumina, minyak batubara cair, upgrading


Author(s):  
Toshio Shinoki ◽  
Masaaki Kamizono ◽  
Koshi Katagiri ◽  
Masaki Kusumi ◽  
Yasuyoshi Takeda ◽  
...  

Abstract The authors develop a small and simple steam-reforming reactor in a home-use size for such various heavy-hydrocarbons fuels as n-octane, n-decane, n-tetradecane, and n-hexadecane in addition to n-dodecane and measure the inside-temperature profile and the molar fractions of main-gas components such as H2, CH4, CO, and CO2. This reactor is designed only for laboratory-test use, not for a commercial product. As a result, the authors successfully achieve suitable inside-temperature profiles, namely, temperature almost linearly increases in the downstream direction along a reactor, under two conditions such as 600–950 K at the upstream end of the catalyst-layer bed in the reactor and less than 1070 K everywhere in the reactor. And, the authors reveal the effects of the liquid-hourly space velocity (LHSV) upon the molar fractions, a conversion ratio and reforming efficiencies for various heavy-hydrocarbons fuels. All the molar fractions, which agree well with thermochemical-equilibrium theory, are approximately independent of LHSV. The conversion ratio is about 90% for LHSV ≤ 0.6 h−1 and monotonically decreases with increasing LHSV for LHSV > 0.6 h−1. Then, each reforming efficiency always attains the maximum for LHSV ≈ 0.6 h−1 being independent of fuels. This suggests the common upper limit of LHSV for practically suitable operation.


Author(s):  
Yasutaka Fujimoto ◽  
Toshio Shinoki ◽  
Hirochika Tanigawa ◽  
Jiro Funaki ◽  
Katsuya Hirata

The authors develop a small and simple steam-reforming reactor in a home-use size for n-dodecane as a heavy-hydrocarbons fuel. Under the thermal condition controlled by electric heaters and a gas burner with a thermal diffuser, the authors measure the inside-temperature profile and the hydrogen-molecule ratio (concentration) RH2, together with the molecule ratios RCH4, RCO and RCO2 of other main gas components such as CH4, CO and CO2, respectively. Besides, the authors conduct numerical simulations based on a thermal-equilibrium theory, in addition to experiments. As a result, the authors successfully achieve suitable inside-temperature profiles. And, the effects of the liquid-hourly-space velocity LHSV upon RH2, RCH4, RCO and RCO2 are shown, experimentally. For LHSV ≤ 1, the experimental results agree well with the thermal equilibrium theory. This is in consistent with high conversion ratio XC12H26 ≳ 80%. Furthermore, the authors reveal the effects of the temperature T inside the reactor upon the molecule ratios, comparing with the thermal-equilibrium theory.


2010 ◽  
Vol 1279 ◽  
Author(s):  
P. Lan ◽  
Q. L. Xu ◽  
L. H. Lan ◽  
Y. J. Yan ◽  
J. A. Wang

AbstractA Ni/MgO-La2O3-Al2O3 catalyst with Ni as active component, Al2O3 as support, MgO and La2O3 as additives was prepared and its catalytic activity was evaluated in the process of hydrogen production from catalytic steam reforming of bio-oil. In the catalytic evaluation, some typical components present in bio-oil such as acetic acid, butanol, furfural, cyclopentanone and m-cresol were mixed following a certain proportion as model compounds. Reaction parameters like temperature, steam to carbon molar ratio and liquid hourly space velocity were studied with hydrogen yield as index. The optimal reaction conditions were obtained as follows: temperature 750-850 °C, steam to carbon molar ratio 5-9, liquid hourly space velocity 1.5-2.5 h-1. The maximum hydrogen yield was 88.14%. The carbon deposits were formed on the catalyst surface but its content decreased as reaction temperature increased in the bio-oil steam reforming process.


2019 ◽  
Vol 20 (4) ◽  
pp. 61-66
Author(s):  
Halah M. Hussain ◽  
Abdulhaleem A.K. Mohammed

Hydroisomerization of Iraqi light naphtha was studied on prepared Ni-Pt/H-mordenite catalyst at a temperature range of 220-300°C, hydrogen to hydrocarbon molar ratio of 3.7, liquid hourly space velocity (LHSV) 1 hr-1 and at atmospheric pressure. The result shows that the hydrisomerization of light naphtha increases with the increase in reaction temperature at constant LHSV. However, above 270 0C the isomers formation decreases and the reaction is shifted towards the hydrocracking reaction, a higher octane number of naphtha was formed at 270 °C.


2019 ◽  
Vol 70 (7) ◽  
pp. 2481-2484
Author(s):  
Rami Doukeh ◽  
Mihaela Bombos ◽  
Ion Bolocan

The kinetic study of the thiophene hydrodesulphurisation process was carried out for CoMo/gama-Al2O3 catalyst, at temperatures between 175 and 275 �C, pressure ranged from 30bar to 60 bar and the liquid hourly space velocity from 1h-1 to 4 h-1. For the reaction mechanism, the Langmuir-Hinshelwood-Hougen-Watson model (LHHW) was used and two kinetic models were proposed: the first model, that considered that H2 is adsorbed on a different type of active center than thiophene and the second model, that considered that the two reactants are adsorbed on the same type of active sites. The values obtained for the average relative error (ARE) and the correlation coefficient between the experimental and the calculated data (R2) indicate that the Langmuir-Hinshelwood model, describing the adsorption on two active sites, best describes the kinetics of the thiophene hydrodesulfurization reaction over CoMo/gama-Al2O3 tested catalyst.


Sign in / Sign up

Export Citation Format

Share Document