Deciphering Plasmonic Modality to Address Challenges in Disease Diagnostics

Author(s):  
Esma Derin ◽  
Özgecan Erdem ◽  
Fatih Inci
Keyword(s):  
2020 ◽  
Vol 21 (11) ◽  
pp. 1078-1084
Author(s):  
Ruizhi Fan ◽  
Chenhua Dong ◽  
Hu Song ◽  
Yixin Xu ◽  
Linsen Shi ◽  
...  

: Recently, an increasing number of biological and clinical reports have demonstrated that imbalance of microbial community has the ability to play important roles among several complex diseases concerning human health. Having a good knowledge of discovering potential of microbe-disease relationships, which provides the ability to having a better understanding of some issues, including disease pathology, further boosts disease diagnostics and prognostics, has been taken into account. Nevertheless, a few computational approaches can meet the need of huge scale of microbe-disease association discovery. In this work, we proposed the EHAI model, which is Enhanced Human microbe- disease Association Identification. EHAI employed the microbe-disease associations, and then Gaussian interaction profile kernel similarity has been utilized to enhance the basic microbe-disease association. Actually, some known microbe-disease associations and a large amount of associations are still unavailable among the datasets. The ‘super-microbe’ and ‘super-disease’ were employed to enhance the model. Computational results demonstrated that such super-classes have the ability to be helpful to the performance of EHAI. Therefore, it is anticipated that EHAI can be treated as an important biological tool in this field.


2019 ◽  
Vol 15 (2) ◽  
pp. 202-206 ◽  
Author(s):  
Olaitan O. Omitola ◽  
Hammed O. Mogaji ◽  
Andrew W. Taylor-Robinson

Recent research has highlighted the growing public health concern arising from mismanagement of malarial and non-malarial febrile illnesses that present with similar clinical symptoms. A retrospective examination of patient records suggests that a syndrome-based diagnosis results in over-diagnosis of malaria. Consequently, interventions to mitigate the frequency of presumptive treatment of fever in malaria-endemic settings have been sought, especially for resourcelimited areas. Guidelines that promote the use of microbiological tests and modern diagnostic kits have demonstrated laudable progress in the ongoing challenge of febrile illness management. However, this has brought attention to other factors like the complication of mixed infections. These issues, which remain significant limitations to current tools and methods in the accurate diagnosis and subsequent therapy of febrile illnesses, call for innovative diagnostic interventions. Advancements in biomedical research over the last decade have led to the introduction of state-of-the-art molecular techniques of omics origin that provide the possibility of diverse applications in disease diagnostics. Here, we present notable challenges in febrile illness management, describe currently available tools and methods for diagnosis, and discuss the opportunities for future progress, including harnessing cuttingedge transcriptional profiling and proteomics technology to detect host immunological signatures during infection.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1228
Author(s):  
Carla Colque-Little ◽  
Daniel Buchvaldt Amby ◽  
Christian Andreasen

The journey of the Andean crop quinoa (Chenopodium quinoa Willd.) to unfamiliar environments and the combination of higher temperatures, sudden changes in weather, intense precipitation, and reduced water in the soil has increased the risk of observing new and emerging diseases associated with this crop. Several diseases of quinoa have been reported in the last decade. These include Ascochyta caulina, Cercospora cf. chenopodii, Colletotrichum nigrum, C. truncatum, and Pseudomonas syringae. The taxonomy of other diseases remains unclear or is characterized primarily at the genus level. Symptoms, microscopy, and pathogenicity, supported by molecular tools, constitute accurate plant disease diagnostics in the 21st century. Scientists and farmers will benefit from an update on the phytopathological research regarding a crop that has been neglected for many years. This review aims to compile the existing information and make accurate associations between specific symptoms and causal agents of disease. In addition, we place an emphasis on downy mildew and its phenotyping, as it continues to be the most economically important and studied disease affecting quinoa worldwide. The information herein will allow for the appropriate execution of breeding programs and control measures.


2021 ◽  
Vol 22 (8) ◽  
pp. 3873
Author(s):  
Gabriel Luta ◽  
Mihail Butura ◽  
Adrian Tiron ◽  
Crina E. Tiron

Background: In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from N-hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths. In the present in vitro study, we expand our previous investigation on CD-NHF in the U87 cell line by adding different drug combinations. Methods: Cell viability, migration, invasion, and immunofluorescent staining of key molecular pathways have been assessed after various treatments with CD-NHF and/or K252A and AKTVIII inhibitors in the U87 cell line. Results: Association of an inhibitor strongly potentiates the anti-tumoral properties of CD-NHF identified by significant impairment of migration, invasion, and expression levels of phosphorylated Akt, p70S6Kinase, or by decreasing expression levels of Bcl-2, IL-6, STAT3, and Slug. Conclusions: Using simultaneously reduced doses of both CD-NHF and an inhibitor in order to reduce side effects, the viability and invasiveness of U87 glioma cells were significantly impaired.


Nanomedicine ◽  
2015 ◽  
Vol 10 (14) ◽  
pp. 2133-2137
Author(s):  
Christina Janko ◽  
Marina Pöttler ◽  
Ralf P Friedrich ◽  
Stefan Lyer ◽  
Iwona Cicha ◽  
...  

Author(s):  
Catarina M. Abreu ◽  
Ricardo Soares-dos-Reis ◽  
Pedro N. Melo ◽  
João B. Relvas ◽  
Joana Guimarães ◽  
...  

Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 726-733 ◽  
Author(s):  
Mengpei Guo ◽  
Yinbing Bian ◽  
Jinjie Wang ◽  
Gangzheng Wang ◽  
Xiaolong Ma ◽  
...  

A new partitivirus named Lentinula edodes partitivirus 1 (LePV1) was isolated from a diseased L. edodes strain with severe degeneration of the mycelium and imperfect browning in bag cultures. The nucleotide sequences of LePV1 dsRNA-1 and dsRNA-2 were determined; they were 2,382 bp and 2,245 bp in length, and each contained a single ORF encoding RNA-dependent RNA polymerase (RdRp) and coat protein (CP), respectively. The purified virus preparation contained isometric particles 34 nm in diameter encapsidating these dsRNAs. Phylogenetic analyses showed LePV1 to be a new member of Betapartitivirus, with the RdRp sequence most closely related to Grapevine partitivirus. RT-PCR analysis showed that 27 of the 56 Chinese L. edodes core collection strains carry LePV1, with the virus being more common in wild strains than cultivated strains. In addition, qPCR analysis suggested that coinfection with L. edodes mycovirus HKB (LeV-HKB) could increase replication of the RdRp gene of LePV1. This study may be essential for the development of more accurate disease diagnostics and the formulation of control strategies for viral diseases in L. edodes.


Sign in / Sign up

Export Citation Format

Share Document