Neuromorphic Devices Based on Chalcogenide Materials

2021 ◽  
pp. 125-147
Author(s):  
Jia Chen ◽  
Yifan Lu ◽  
Zhe Yang ◽  
Yi Li ◽  
Xiangshui Miao
Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 589
Author(s):  
Sivagowri Shanmugaratnam ◽  
Balaranjan Selvaratnam ◽  
Aravind Baride ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
...  

Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.


1987 ◽  
Vol 97 ◽  
Author(s):  
Steven A. Sunshine ◽  
Doris Kang ◽  
James A. Ibers

ABSTRACTThe use of A2 Q/Q melts (A - alkali metal, Q - S or Se) for the synthesis of new one-dimensional solid-state materials is found to be of general utility and is illustrated here for the synthesis of K4 Ti3 SI4. Reaction of Ti metal with a K2 S/S melt at 375°C for 50 h affords K4 Ti3 SI4. The structure possesses one-dimensional chains of seven and eightcoordinate Ti atoms with each chain isolated from all others by surrounding K atoms. There are six S-S pairs (dave - 2.069(3) Å) so that the compound is one of TiIV and may be described as K4 [Ti3 (S)2 (S2)6]. Electrical conductivity measurements indicate that this material is a semiconductor.


1986 ◽  
Vol 1 (2) ◽  
pp. 234-236 ◽  
Author(s):  
Santokh S. Badesha ◽  
George T. Fekete ◽  
Ihor Tarnawskyj

Electrophotographic properties of chalcogenide materials are readily influenced by altering their composition and/or structure. Dark decay and cycle down of photoreceptors utilizing small particle generators are both directly proportional to average crystallite size (ACS). This paper describes a novel chemical method to control the ACS of Se, Te, and Sex Te1−x alloys. These chalcogenide materials are prepared as powders by the reduction or coreduction of SeIV and/or TeIV intermediates with hydrazine, in organic media. To control the ACS of precipitated chalcogens the reaction is carried out at the desired temperature. X-ray diffraction measurements are used to determine the ACS, homogeneity, and phase of these precipitated powders.


Author(s):  
Lillian Hoddeson ◽  
Peter Garrett

In late 1959, Iris was at last able to join Ovshinsky in Detroit, and they began creating a new family with her two young children and his three sons. This was also a new beginning in Ovshinsky’s inventive career, as he and Iris started their novel company, Energy Conversion Laboratory. Here, in a modest storefront, Ovshinsky made his most important discovery: a threshold switch composed of amorphous chalcogenide materials. The threshold switch’s almost instantaneous and reversible action, something previously considered impossible, as well as its capacity to handle large AC currents, distinguished it from crystalline semiconductor devices like the transistor. Such switching, now known as “the Ovshinsky effect,” was a radically new phenomenon that would force a paradigm shift in condensed matter physics. A slightly different material composition yielded the memory switch, the basis of phase-change memory.


2019 ◽  
Vol 43 (28) ◽  
pp. 11034-11040
Author(s):  
Vimal K. Jain

Synthesis of and metallophilic interactions in N-heterocyclic chalcogenolates of coinage metals have been described and their utility as molecular precursors for binary and ternary chalcogenide materials has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document