scholarly journals SnS2/TiO2 Nanocomposites for Hydrogen Production and Photodegradation Under Extended Solar Irradiation

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 589
Author(s):  
Sivagowri Shanmugaratnam ◽  
Balaranjan Selvaratnam ◽  
Aravind Baride ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
...  

Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.

RSC Advances ◽  
2014 ◽  
Vol 4 (55) ◽  
pp. 28978-28986 ◽  
Author(s):  
Huigang Wang ◽  
Dongmei Zhou ◽  
Shaosong Shen ◽  
Junmin Wan ◽  
Xuming Zheng ◽  
...  

Copper(ii)tetra(4-carboxyphenyl) porphyrin were chemically sensitized on TiO2, its electronic relaxation dynamics and the visible-light induced catalytic mechanism are discussed.


2020 ◽  
Vol 10 (4) ◽  
pp. 537-542
Author(s):  
Fei Tian ◽  
Gen Zhu ◽  
Kexin Shen ◽  
Chunju Li ◽  
Haitao Li ◽  
...  

Organic pollutants pose a serious threat to human health, and so their control by photocatalytic techniques has become an important field. There is an urgent need to devise convenient syntheses of effective photocatalysts for the degradation of contaminants. Here, high-performance anatase TiO2 nanowires have been obtained through a hydrothermal method followed by calcination at different temperatures in Ar. The products have been characterized by SEM, XRD, FTIR, and UV/Vis DRS measurements. The photocatalytic performances of the as-prepared catalysts in the degradation of rhodamine 6G (R6G) have been evaluated. The experimental results revealed that as-prepared TiO2 nanowires calcined at 600 °C (TNWs-600) exhibited the highest degree of R6G degradation (96%) under simulated solar irradiation. This could be attributed to their stable anatase phase with good photocatalytic activity, the excellent light absorption ability of which favors excitation. Overall, the fabricated TNWs-600 constitute a promising candidate material for photocatalytic applications in the removal of environmental pollutants.


Fuel ◽  
2016 ◽  
Vol 181 ◽  
pp. 670-679 ◽  
Author(s):  
A.M. Huerta-Flores ◽  
Leticia M. Torres-Martínez ◽  
Edgar Moctezuma ◽  
O. Ceballos-Sanchez

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4577
Author(s):  
Kun-Yauh Shih ◽  
Yen-Ling Kuan ◽  
En-Rui Wang

In this study, bismuth oxybromide/reduced graphene oxide (BiOBr/RGO), i.e. BiOBr-G nanocomposites, were synthesized using a one-step microwave-assisted method. The structure of the synthesized nanocomposites was characterized using Raman spectroscopy, X-ray diffractometry (XRD), photoluminescence (PL) emission spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible diffuse reflection spectroscopy (DRS). In addition, the ability of the nanocomposite to degrade methylene blue (MB) under visible light irradiation was investigated. The synthesized nanocomposite achieved an MB degradation rate of above 96% within 75 min of continuous visible light irradiation. In addition, the synthesized BiOBr-G nanocomposite exhibited significantly enhanced photocatalytic activity for the degradation of MB. Furthermore, the results revealed that the separation of the photogenerated electron–hole pairs in the BiOBr-G nanocomposite enhanced the ability of the nanocomposite to absorb visible light, thus improving the photocatalytic properties of the nanocomposites. Lastly, the MB photo-degradation mechanism of BiOBr-G was investigated, and the results revealed that the BiOBr-G nanocomposites exhibited good photocatalytic activity.


2012 ◽  
Vol 488-489 ◽  
pp. 1519-1524 ◽  
Author(s):  
Kittirong Srimuangmak ◽  
Sutham Niyomwas

In this study titanium dioxide nanotube (TNT) were prepared by anodization method. The effects of the temperature, time and voltage on the anodization process were investigated in detail. Photocatalytic activity of the TNT films was evaluated in terms of the degradation of methylene blue in aqueous solution under UV light irradiation. The results showed that the optimization of temperature, voltage and time on anodization process were 45oC, 20 V and 1 day, respectively. Consequently, these results indicate that the optimization of anodization process is critical to achieve the high performance of photocatalytic reaction.


2014 ◽  
Vol 69 (11) ◽  
pp. 2184-2190 ◽  
Author(s):  
J. Matos ◽  
R. Montaña ◽  
E. Rivero ◽  
A. Escudero ◽  
D. Uzcategui

The influence of activated carbon (AC) on the photocatalytic activity of different crystalline TiO2 phases was verified in the photocatalytic degradation of methylene blue under UV and solar irradiation. The results showed a volcano trend with a maximum photoactivity for the crystalline phase ratio of anatase:rutile equal to 80:20 both under UV or solar irradiation. By contrast, in presence of AC the photocatalytic activity of the binary materials of TiO2/AC followed an exponential trend, increasing as a function of the increase in anatase proportion in the TiO2 framework. The increase in the photoactivity of the binary material TiO2/AC relative to neat TiO2 was up to 22 and about 17 times higher under UV and visible irradiation, respectively. The present results suggest that AC interacts more efficiently with anatase phase than with rutile phase.


2019 ◽  
Vol 19 (6) ◽  
pp. 3343-3355 ◽  
Author(s):  
Ge Li ◽  
Bao-Dong Wang ◽  
Qi Sun ◽  
Wayne-Qiang Xu ◽  
Yi-Fan Han

Pure TiO2 nanoparticles and ones doped with Fe and/or Ni were successfully prepared by a co-precipitation method from ilmenite. The samples were structurally characterized by XRD, XPS, FT-IR, UV-vis, SEM, EDX, AAS and BET measurement. The XRD results showed that all samples were anatase TiO2, and no characteristic peaks of dopants were observed. The crystallite sizes of all doped TiO2 nanoparticles were less than 20 nm and doping TiO2 with metal ions can suppress the crystal growth of the particles. The XRD and XPS results indicated that TiO2 was uniformly doped and its crystalline phase was not changed by doping. The specific surface area of Fe–Ni/TiO2 is bigger than that of the un-doped TiO2. The pore size and pore volume of Fe–Ni/TiO2 is smaller than that of the un-doped. UV-vis spectra of the samples showed that the absorption edge red shifted with increasing doped metal content. The photocatalytic activity was evaluated in oxidative degradation of methylene blue (MB) with H2O2 under visible light irradiation. When doped with a single type of transition metal, the photocatalytic performance of Ni-doped samples was lower than that of Fe-doped ones. For the co-doped catalysts, the catalytic efficiency of 0.5%Fe4%Ni/TiO2 was the highest, reaching 93.34% after 250 min. Metal doping enhanced the photocatalytic decomposition of methylene blue compared with that of pure TiO2 by up to 1.5 times. The synergistic effects of the two metal ions improved the photocatalytic performance. The particles exhibited pronounced activity in degradation of MB as well as efficient recyclability. The photocatalytic degradation mechanism of methylene blue was analyzed.


2016 ◽  
Vol 19 (3) ◽  
pp. 176-184
Author(s):  
Khanh Hong Le ◽  
Oanh Le Kieu Pham ◽  
Thong Thy Tran ◽  
Vien Minh Le

S-doped SrTiO3 was synthesized by the solid state reaction method between S and SrTiO3 power under the N2 flow. The effect of temperature, calcination time and S-content on the formation and photocatalytic activity of SrTiO3 were investigated. The morphology and properties of obtained powders were characterized by XRD, UV-DRS, UV-VIS, SEM, BET. The photocatalytic activities of S-doped SrTiO3 was also investigated through the decomposition of methylene blue. As a result, the 10 %S-doped SrTiO3 contributed to the decrease of band gap energy to 2.73 eV and enhanced the photocatalytic activity for methylene blue degradation of 74.5 % after 180 min irradiation.


Proceedings ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 43
Author(s):  
Afsaneh Rashidizadeh ◽  
Hossein Ghafuri ◽  
Zeynab Rezazadeh

In recent years, heterogeneous semiconductor photocatalysts have attracted great attention in the arena of environmental remediation and solar energy conversion; because, sunlight energy is a renewable, cheap, and accessible source of energy and also converting solar energy to chemical energy can be declined the energy crisis and global warming. Development of visible light heterogeneous photocatalysts with high efficiency and chemical stability is important for catalysis researchers. Among different types of semiconductor material, polymeric graphitic carbon nitride (g-C3N4) with a medium band gap of about 2.7 eV has been widely applied in photodegradation of organic pollutants, water splitting, CO2 reduction, solar cells, energy storage, and organic synthesis. Unfortunately, due to the high rate recombination of photoinduced carriers, the photocatalytic performance of the bare g-C3N4 is still poor. Hence, many strategies including metal doping, noble metal deposition, and coupling with semiconductor composites have been employed to modify g-C3N4. Herein, we report the synthesis of g-C3N4/CuWO4 nanocomposite via a hydrothermal process. The prepared visible-light-driven nanocomposite exhibited an enhanced photocatalytic activity compared with bare g-C3N4 for the degradation of methylene blue (MB) under LED light irradiation.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 489
Author(s):  
Hongchen Song ◽  
Jing Sun ◽  
Tingting Shen ◽  
Lang Deng ◽  
Xikui Wang

The increasing concentration of residual ciprofloxacin (CIP) can cause potential harm to the environment. Photocatalysis has been regarded as an effective method for the degradation of CIP. Bi/BiVO4 with excellent photocatalytic performance was synthesized partial reduction with NaBH4. The structure, morphology, composition, and optical performance of BiVO4 and Bi/BiVO4 were characterized by a variety of techniques. The results showed that the Bi/BiVO4 exhibits high photocatalytic activity in the degradation of CIP. Comparison of BiVO4 and Bi/BiVO4 has lower photoluminescence intensity and higher photocurrent responses intensity. The introduction of Bi made Bi/BiVO4 have a higher charge separation efficiency and generate more active free radicals. In addition, the radical trapping experiments revealed that superoxide free radicals and holes were the main active free radicals during the degradation of CIP. The pathway of CIP degradation was investigated through high performance liquid chromatography-mass spectrometry, and a possible degradation mechanism was proposed.


Sign in / Sign up

Export Citation Format

Share Document