Activated Platelets‐Targeting Micelles with Controlled Drug Release for Effective Treatment of Primary and Metastatic Triple Negative Breast Cancer

2019 ◽  
Vol 29 (13) ◽  
pp. 1806620 ◽  
Author(s):  
Yujie Zhang ◽  
Xi Zhu ◽  
Xinli Chen ◽  
Qinjun Chen ◽  
Wenxi Zhou ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3557
Author(s):  
Charu Kothari ◽  
Alisson Clemenceau ◽  
Geneviève Ouellette ◽  
Kaoutar Ennour-Idrissi ◽  
Annick Michaud ◽  
...  

Triple-negative breast cancer (TNBC) is a major concern among the different subtypes of breast cancer (BC) due to the lack of effective treatment. In a previous study by our group aimed at understanding the difference between TNBC and non-TNBC tumors, we identified the gene TBC1 domain family member 9 (TBC1D9), the expression of which was lower in TNBC as compared to non-TNBC tumors. In the present study, analysis of TBC1D9 expression in TNBC (n = 58) and non-TNBC (n = 25) patient tumor samples validated that TBC1D9 expression can differentiate TNBC (low) from non-TNBC (high) samples and that expression of TBC1D9 was inversely correlated with grade and proliferative index. Moreover, we found that downregulation of the TBC1D9 gene decreases the proliferation marginally in non-TNBC and was associated with increased migratory and tumorigenic potential in both TNBC and luminal BC cell lines. This increase was mediated by the upregulation of ARL8A, ARL8B, PLK1, HIF1α, STAT3, and SPP1 expression in TBC1D9 knockdown cells. Our results suggest that TBC1D9 expression might limit tumor aggressiveness and that it has a differential expression in TNBC vs. non-TNBC tumors.


2020 ◽  
Vol 8 (2) ◽  
pp. 720-738 ◽  
Author(s):  
Siming Yu ◽  
Guanning Huang ◽  
Riming Yuan ◽  
Tianfeng Chen

A multifunctional Ir complex(iii) loaded nanoplatform is designed for high efficient imaging and therapy of TNBC. The photothermal controlled Ir complex release mechanism and the synergistic anticancer mechanism are elucidated.


2020 ◽  
Vol 21 (15) ◽  
pp. 1569-1575
Author(s):  
Acharya Balkrishna ◽  
Rashmi Mittal ◽  
Vedpriya Arya

Triple negative breast cancer is the highly aggressive form of breast cancer with high reoccurrence rate and is short of effective treatment strategy. The prognostic markers of it are also not well understood. miRNAs are the global regulators of various cancers on the virtue of its ability to post transcriptional regulation of genes involved in various pathways involved in complicating TNBC. In this review we studied the expression of miRNAs at different stages of TNBC and the role of miRNAs as a tumor suppressor to inhibit cell proliferation, angiogenesis, invasion and metastasis and to induce apoptosis and thereby proposing these miRNAs as an effective treatment strategy against TNBC. miRNA also acts as chemosenstizer in enhancing chemosensitivity of conventional drugs against resistant TNBC cells. The present review emphasizes the importance of miRNAs as prognostic markers to determine the overall survival, disease free survival and distant metastasis free survival rate in TNBC patients. We speculate that miRNA can present themselves as an effective treatment strategy and prognostic marker against TNBC.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Amol Shindikar ◽  
Akshita Singh ◽  
Malcolm Nobre ◽  
Saurabh Kirolikar

Researchers have made considerable progress in last few decades in understanding mechanisms underlying pathogenesis of breast cancer, its phenotypes, its molecular and genetic changes, its physiology, and its prognosis. This has allowed us to identify specific targets and design appropriate chemical entities for effective treatment of most breast cancer phenotypes, resulting in increased patient survivability. Unfortunately, these strategies have been largely ineffective in the treatment of triple negative breast cancer (TNBC). Hormonal receptors lacking render the conventional breast cancer drugs redundant, forcing scientists to identify novel targets for treatment of TNBC. Two natural compounds, curcumin and resveratrol, have been widely reported to have anticancer properties.In vitroandin vivostudies show promising results, though their effectiveness in clinical settings has been less than satisfactory, owing to their feeble pharmacokinetics. Here we discuss these naturally occurring compounds, their mechanism as anticancer agents, their shortcomings in translational research, and possible methodology to improve their pharmacokinetics/pharmacodynamics with advanced drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document