scholarly journals Enhancing Osteosarcoma Killing and CT Imaging Using Ultrahigh Drug Loading and NIR‐Responsive Bismuth Sulfide@Mesoporous Silica Nanoparticles

2018 ◽  
Vol 7 (19) ◽  
pp. 1800602 ◽  
Author(s):  
Yao Lu ◽  
Lihua Li ◽  
Zefeng Lin ◽  
Mei Li ◽  
Xiaoming Hu ◽  
...  
Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 288 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

There is a need for the improvement of conventional cancer treatment strategies by incorporation of targeted and non-invasive procedures aimed to reduce side-effects, drug resistance, and recurrent metastases. The anti-cancer drug, 5-fluorouracil (5-FU), is linked to a variety of induced-systemic toxicities due to its lack of specificity and potent administration regimens, necessitating the development of delivery vehicles that can enhance its therapeutic potential, while minimizing associated side-effects. Polymeric mesoporous silica nanoparticles (MSNs) have gained popularity as delivery vehicles due to their high loading capacities, biocompatibility, and good pharmacokinetics. MSNs produced in this study were functionalized with the biocompatible polymers, chitosan, and poly(ethylene)glycol to produce monodisperse NPs of 36–65 nm, with a large surface area of 710.36 m2/g, large pore volume, diameter spanning 9.8 nm, and a favorable zeta potential allowing for stability and enhanced uptake of 5-FU. Significant drug loading (0.15–0.18 mg5FU/mgmsn), controlled release profiles (15–65%) over 72 hours, and cell specific cytotoxicity in cancer cells (Caco-2, MCF-7, and HeLa) with reduced cell viability (≥50%) over the non-cancer (HEK293) cells were established. Overall, these 5FU-MSN formulations have been shown to be safe and effective delivery systems in vitro, with potential for in vivo applications.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3202
Author(s):  
Sumita Swar ◽  
Veronika Máková ◽  
Ivan Stibor

Our study was focused on the synthesis of selective mesoporous silica nanoparticles (MSNs: MCM-41, MCM-48, SBA-15, PHTS, MCF) that are widely studied for drug delivery. The resulting mesoporous surfaces were conveniently prepared making use of verified synthetic procedures. The MSNs thus obtained were characterized by Brunauer-Emmett-Teller (BET) analysis and scanning electron microscopy (SEM). The selected MSNs with various pore diameters and morphologies were examined to evaluate the capability of L-DOPA drug loading and release. L-DOPA is a well-known drug for Parkinson’s disease. The L-DOPA drug loading and release profiles were measured by UV-VIS spectroscopy and SBA-15 was proved to be the most effective amongst all the different types of tested mesoporous silica materials as L-DOPA drug vehicle.


RSC Advances ◽  
2019 ◽  
Vol 9 (61) ◽  
pp. 35566-35578 ◽  
Author(s):  
Subhankar Mukhopadhyay ◽  
Hanitrarimalala Veroniaina ◽  
Tadious Chimombe ◽  
Lidong Han ◽  
Wu Zhenghong ◽  
...  

Protean mesoporous silica nanoparticles are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including changeable pore size, mesoporosity, high drug loading capacity and biodegradability.


2019 ◽  
Vol 19 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Xiaohui Pu ◽  
Jia Li ◽  
Peng Qiao ◽  
Mengmeng Li ◽  
Haiyan Wang ◽  
...  

Background: With the development of nanotechnology, nanocarrier has widely been applied in such fields as drug delivery, diagnostic and medical imaging and engineering in recent years. Among all of the available nanocarriers, mesoporous silica nanoparticles (MSNs) have become a hot issue because of their unique properties, such as large surface area and voidage, tunable drug loading capacity and release kinetics, good biosafety and easily modified surface. Objective: We described the most recent progress in silica-assisted drug delivery and biomedical applications according to different types of Cargo in order to allow researchers to quickly learn about the advance in this field. Methods: Information has been collected from the recently published literature available mainly through Title or Abstract search in SpringerLink and PubMed database. Special emphasis is on the literature available during 2008-2017. Results: In this review, the major research advances of MSNs on the drug delivery and biomedical applications were summarized. The significant advantages of MSNs have also been listed. It was found that the several significant challenges need to be addressed and investigated to further advance the applications of these structurally defined nanomaterials. Conclusion: Through approaching this review, the researchers can be aware of many new synthetic methods, smart designs proposed in the recent year and remaining questions of MSNs at present.


2021 ◽  
pp. 225-245
Author(s):  
Lakshminarasimhan Harini ◽  
Karthikeyan Bose ◽  
T. Mohan Viswanathan ◽  
Nachimuthu Senthil Kumar ◽  
Krishnan Sundar ◽  
...  

2011 ◽  
Vol 100 (3) ◽  
pp. 600a
Author(s):  
Anna M. Sauer ◽  
Axel Schlossbauer ◽  
Valentina Cauda ◽  
Hanna Engelke ◽  
Christian Argyo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document