Mesoporous Silica Nanoparticles as a Prospective and Promising Approach for Drug Delivery and Biomedical Applications

2019 ◽  
Vol 19 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Xiaohui Pu ◽  
Jia Li ◽  
Peng Qiao ◽  
Mengmeng Li ◽  
Haiyan Wang ◽  
...  

Background: With the development of nanotechnology, nanocarrier has widely been applied in such fields as drug delivery, diagnostic and medical imaging and engineering in recent years. Among all of the available nanocarriers, mesoporous silica nanoparticles (MSNs) have become a hot issue because of their unique properties, such as large surface area and voidage, tunable drug loading capacity and release kinetics, good biosafety and easily modified surface. Objective: We described the most recent progress in silica-assisted drug delivery and biomedical applications according to different types of Cargo in order to allow researchers to quickly learn about the advance in this field. Methods: Information has been collected from the recently published literature available mainly through Title or Abstract search in SpringerLink and PubMed database. Special emphasis is on the literature available during 2008-2017. Results: In this review, the major research advances of MSNs on the drug delivery and biomedical applications were summarized. The significant advantages of MSNs have also been listed. It was found that the several significant challenges need to be addressed and investigated to further advance the applications of these structurally defined nanomaterials. Conclusion: Through approaching this review, the researchers can be aware of many new synthetic methods, smart designs proposed in the recent year and remaining questions of MSNs at present.

RSC Advances ◽  
2019 ◽  
Vol 9 (61) ◽  
pp. 35566-35578 ◽  
Author(s):  
Subhankar Mukhopadhyay ◽  
Hanitrarimalala Veroniaina ◽  
Tadious Chimombe ◽  
Lidong Han ◽  
Wu Zhenghong ◽  
...  

Protean mesoporous silica nanoparticles are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including changeable pore size, mesoporosity, high drug loading capacity and biodegradability.


2019 ◽  
Vol 26 (31) ◽  
pp. 5745-5763 ◽  
Author(s):  
Fahima Dilnawaz

Background: Cancer is a widespread disease and has a high mortality rate. Popular conventional treatment encompasses chemotherapy, radiation and surgical resection. However, these treatments impart lots of toxicity problems to the patients mostly due to their non-selectiveness nature, which invokes drug resistances and severe side-effects. Objectives: In this regard, nanotechnology has claimed to be a smart technology that provides the system with the ability to target drugs to the specific sites. With the use of nanotechnology, various nanomaterials that are widely used as a drug delivery vehicle are created for biomedical applications. Amongst variously diversified nanovehicles, mesoporous silica nanoparticles (MSNs) have attracted enormous attention due to their structural characteristics, great surface areas, tunable pore diameters, good thermal and chemical stability, excellent biocompatibility along with ease of surface modification. Furthermore, the drug release from MSNs can be tailored through various stimuli response gatekeeper systems. The ordered structure of MSNs is extremely suitable for loading of the high amount of drug molecules with controlled delivery for targeting the cancer tissues via enhanced permeability and retention effect or further with surface modification, it can also be actively targeted by various ligands. Methods: The review article emphases the common synthetic methods and current advancement of MSNs usages for stimuli response drug delivery, immunotherapy as well as the theranostic ability for cancer. Conclusion: Although MSNs are becoming the promising tool for more efficient and safer cancer therapy, however, additional translational studies are required to explore its multifunctional ability in a clinical setting.


2011 ◽  
Vol 100 (3) ◽  
pp. 600a
Author(s):  
Anna M. Sauer ◽  
Axel Schlossbauer ◽  
Valentina Cauda ◽  
Hanna Engelke ◽  
Christian Argyo ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 742 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

The fruition, commercialisation and clinical application combining nano-engineering, nanomedicine and material science for utilisation in drug delivery is becoming a reality. The successful integration of nanomaterial in nanotherapeutics requires their critical development to ensure physiological and biological compatibility. Mesoporous silica nanoparticles (MSNs) are attractive nanocarriers due to their biodegradable, biocompatible, and relative malleable porous frameworks that can be functionalized for enhanced targeting and delivery in a variety of disease models. The optimal formulation of an MSN with polyethylene glycol (2% and 5%) and chitosan was undertaken, to produce sterically stabilized, hydrophilic MSNs, capable of efficient loading and delivery of the hydrophobic anti-neoplastic drug, doxorubicin (DOX). The pH-sensitive release kinetics of DOX, together with the anticancer, apoptosis and cell-cycle activities of DOX-loaded MSNs in selected cancer cell lines were evaluated. MSNs of 36–60 nm in size, with a pore diameter of 9.8 nm, and a cumulative surface area of 710.36 m2/g were produced. The 2% pegylated MSN formulation (PCMSN) had the highest DOX loading capacity (0.98 mgdox/mgmsn), and a sustained release profile over 72 h. Pegylated-drug nanoconjugates were effective at a concentration range between 20–50 μg/mL, inducing apoptosis in cancer cells, and affirming their potential as effective drug delivery vehicles.


Mesoporous silica nanoparticles (MSNs) have been attracting great attention for the potential biomedical applications in the last decades. Due to the unique properties, such as tunable mesoporous structure, huge surface area, large pore volume, as well as the functional ability of surface, MSNs exhibit high loading capacity for therapeutic active pharmaceutical ingredients (APIs) and controllable release behavior. In this review, the applications of MSNs in pharmaceutics improving the bioavailability, reducing toxicity of loaded drugs, increasing cellular targeted delivery ability and recent advances in drug delivery are summarized.


2015 ◽  
Vol 11 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Ying Wang ◽  
Qinfu Zhao ◽  
Ning Han ◽  
Ling Bai ◽  
Jia Li ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3082 ◽  
Author(s):  
Wei Liu ◽  
Fan Wang ◽  
Yongchao Zhu ◽  
Xue Li ◽  
Xiaojing Liu ◽  
...  

Targeted drug delivery to colon cancer cells can significantly improve the efficiency of treatment. We firstly synthesized carboxyl-modified mesoporous silica nanoparticles (MSN–COOH) via two-step synthesis, and then developed calcium leucovorin (LV)-loaded carboxyl-modified mesoporous silica nanoparticles based on galactosylated chitosan (GC), which are galectin receptor-mediated materials for colon-specific drug delivery systems. Both unmodified and functionalized nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), nitrogen sorption, and dynamic light scattering (DLS). Drug release properties and drug loading capacity were determined by ultraviolet spectrophotometry (UV). LV@MSN–COOH/GC had a high LV loading and a drug loading of 18.07%. In vitro, its release, mainly by diffusion, was sustained release. Cell experiments showed that in SW620 cells with the galectin receptor, the LV@MSN–COOH/GC metabolized into methyl tetrahydrofolic acid (MTHF) and 5-fluorouracil (5-FU)@MSN–NH2/GC metabolized into FdUMP in vivo. MTHF and 5-fluoro-2′-deoxyuridine 5′-monophosphate (FdUMP) had combined inhibition and significantly downregulated the expression of thymidylate synthase (TS). Fluorescence microscopy and flow cytometry experiments show that MSN–COOH/GC has tumor cell targeting, which specifically recognizes and binds to the galectin receptor in tumor cells. The results show that the nano-dosing system based on GC can increase the concentrations of LV and 5-FU tumor cells and enhance their combined effect against colon cancer.


2019 ◽  
Vol 10 (1) ◽  
pp. 289 ◽  
Author(s):  
Kuldeep K. Bansal ◽  
Deepak K. Mishra ◽  
Ari Rosling ◽  
Jessica M. Rosenholm

Mesoporous silica nanoparticles (MSNs) find tremendous applications in drug delivery due to several advantages such as their easy fabrication process, high drug loading, biodegradability, biocompatibility, and so forth. Nevertheless, despite several advantages, the use of this striking drug delivery carrier is restricted due to premature drug release owing to the porous structure. Coating of the pores using polymers has emerged as a great solution to this problem. Polymer coatings, which act as gatekeepers, avoid the premature release of loaded content from MSNs and offers the opportunity for controlled and targeted drug delivery. Therefore, in this review, we have compiled the polymer-based coating approaches used in recent years for improving the drug delivery capability of MSNs. This manuscript provides an insight into the research about the potential of polymer-coated MSNs, allowing the selection of right polymer for coating purposes according to the desired application.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Mingwei He ◽  
Zainen Qin ◽  
Xiaonan Liang ◽  
Xixi He ◽  
Bikang Zhu ◽  
...  

Abstract Andrographolide (AG) has favorable anti-inflammatory and antioxidative capacity. However, it has low bioavailability due to high lipophilicity and can be easily cleared by the synovial fluid after intra-articular injection, leading to low therapeutic efficiency in osteoarthritis (OA). Herein, we designed a nano-sized pH-responsive drug delivery system (DDS) for OA treatment by using modified mesoporous silica nanoparticles (MSNs) with pH-responsive polyacrylic acid (PAA) for loading of AG to form AG@MSNs-PAA nanoplatform. The nanoparticles have uniform size (∼120 nm), high drug loading efficiency (22.38 ± 0.71%) and pH-responsive properties, beneficial to sustained release in OA environment. Compared with AG, AG@MSNs-PAA showed enhanced antiarthritic efficacy and chondro-protective capacity based on IL-1β-stimulated chondrocytes and anterior cruciate ligament transection-induced rat OA model, as demonstrated by lower expression of inflammatory factors and better prevention of proteoglycan loss. Therefore, the AG@MSNs-PAA nanoplatform may be developed as a promising OA-specific and on-demand DDS.


2020 ◽  
Vol 58 (1) ◽  
pp. 39 ◽  
Author(s):  
Ngoc Tram Nguyen Thi ◽  
Dai Hai Nguyen

Mesoporous silica nanoparticles (MSNs) have attracted significant attention from researchers thanks to their high surface area and pore volume, which can increase drug loading capacity. Moreover, MSNs, with their biocompatibility and ease of surface functionalization, are seen as potential drug delivery system. However, the loading of drug into MSNs system still needs further improvement. In this study, hollow mesoporous silica nanoparticles (HMSNs) were fabricated in order to increase the drug loading capacity of nanosilica materials. The synthesized HMSNs possessed inner hollow cores that could remarkably raise the total pore volume and thus improve the capacity for cargo loading. HMSNs were synthesized according to the hard-template method with three main steps: (1) forming of solid SiO2 nanoparticles as templates, (2) forming of core-shell structure by coating MSN layers onto the templates, and (3) forming of hollow core structure by etching away the solid template. The HMSNs product was characterized by TEM, XRD, TGA and FTIR. In addition, drug loading capacity of the material was evaluated with doxorubicin as model drug. The results indicated remarkable improvement in drug loading capacity, compared to MSN sample. Cell assays on cancer lines showed high biocompatibility. These results demonstrated the potential of HMSNs in the delivery of anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document