Low Temperature Casting of Graphene with High Compressive Strength (Adv. Mater. 37/2012)

2012 ◽  
Vol 24 (37) ◽  
pp. 5123-5123 ◽  
Author(s):  
Hengchang Bi ◽  
Kuibo Yin ◽  
Xiao Xie ◽  
Yilong Zhou ◽  
Neng Wan ◽  
...  
2012 ◽  
Vol 24 (37) ◽  
pp. 5124-5129 ◽  
Author(s):  
Hengchang Bi ◽  
Kuibo Yin ◽  
Xiao Xie ◽  
Yilong Zhou ◽  
Neng Wan ◽  
...  

Alloy Digest ◽  
2019 ◽  
Vol 68 (4) ◽  

Abstract Sandvik APM 2730 is a powder metallurgical alloyed hot-isostatic-pressed high-speed tool steel with abrasive wear resistance and high-compressive strength. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-763. Producer or source: Sandvik Steel Company.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yongli Xu ◽  
Guang Yang ◽  
Hongyuan Zhao

For cement-based materials, the curing temperature determines the strength gain rate and the value of compressive strength. In this paper, the 5% cement-stabilized macadam mixture is used. Three indoor controlled temperature curing and one outdoor natural curing scenarios are designed and implemented to study the strength development scenario law of compressive strength, and they are standard temperature curing (20°C), constant low temperature curing (10°C), day interaction temperature curing (varying from 6°C to 16°C), and one outdoor natural temperature curing (in which the air temperature ranges from 4°C to 20°C). Finally, based on the maturity method, the maturity-strength estimation model is obtained by using and analyzing the data collected from the indoor tests. The model is proved with high accuracy based on the validated results obtained from the data of outdoor tests. This research provides technical support for the construction of cement-stabilized macadam in regions with low temperature, which is beneficial in the construction process and quality control.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2911
Author(s):  
Margarida Gonçalves ◽  
Inês Silveirinha Vilarinho ◽  
Marinélia Capela ◽  
Ana Caetano ◽  
Rui Miguel Novais ◽  
...  

Ordinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator. For the first time, mortars in which the commercial sand was replaced by two exhausted sands from biomass boilers (CA and CT) were developed. Firstly, the characterization of the slag and sands (aggregates) was performed. After, the AAMs fresh and hardened state properties were evaluated, being the characterization complemented by FTIR and microstructural analysis. The binder and the mortars prepared with commercial sand presented high compressive strength values after 28 days of curing-56 MPa and 79 MPa, respectively. The mortars developed with exhausted sands exhibit outstanding compressive strength values, 86 and 70 MPa for CT and CA, respectively, and the other material’s properties were not affected. Consequently, this work proved that high compressive strength waste-based one-part AAMs mortars can be produced and that it is feasible to use another waste as aggregate in the mortar’s formulations: the exhausted sands from biomass boilers.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Tuo Shi ◽  
Nianchun Deng ◽  
Xiao Guo ◽  
Wen Xu ◽  
Shi Wang

Taking the construction of a concrete-filled steel tube (CFST) arch bridge (part of the Sichuan-Tibet Railway) in low temperatures as the test site, firstly the deformation performance test of concrete was carried out. Following this initial testing, measurement of compressive strength and shrinkage performance was conducted in large-diameter CFSTs under a variety of curing conditions. Experimental results showed that the expansion effect of Ca-Mg composite expansive agent in concrete was better than that of other expansive agents at any stage. Under low-temperature curing (0°C), the sampling strength of the large-diameter CFSTs reached 73.5% of the design strength at 28 d in the presence of a nonthermal curing system. The design strength itself was reached, when a curing system involving a thermal insulation film was applied, and use of this film also led to improvements in concrete shrinkage. The results suggested that a Ca-Mg composite expansive agent, combined with an insulation film curing system, should be the technique selected for concrete pumping construction of CFST arch bridges in Tibet.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


2011 ◽  
Vol 335-336 ◽  
pp. 1454-1458
Author(s):  
Jing Xian Zhang ◽  
Bi Qin Chen ◽  
Dong Liang Jiang ◽  
Qing Ling Lin ◽  
Zhong Ming Chen ◽  
...  

In the present work, porous HA scaffolds with well controlled pore size, porosity and high compressive strength were prepared by aqueous gelcasting. PMMA beads with different size were used as the pore forming agent. The compositions, microstructure and properties of porous HA bioceramics were analyzed by XRD, SEM, Hg porosimetry etc. The mechanical properties were also tested. For scaffolds with the porosity as 70%, the average compressive strength was 11.9±1.7 MPa. Results showed that glecasting process can be used for the preparation of porous HA biomaterials with well controlled pore size and improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document