High Compressive Strength, Ultra-Lightweight and Lightweight Cement – Formulated with Raw Material Locally Available in Saudi Arabia

Author(s):  
Pranjal Sarmah ◽  
Najeeb Al Tawat ◽  
Prahlad Yadav ◽  
Gaurav Agrawal
2010 ◽  
Vol 156-157 ◽  
pp. 803-807
Author(s):  
Fu Sheng Niu ◽  
Shan Shan Zhou ◽  
Shu Xian Liu ◽  
Jin Xia Zhang

The tailings and slag based geopolymers was prepared by sodium silicate, sodium hydroxide alkali-activated tailings and slag. The compressive strength in 7 d under different raw material proportion were tested. The result indicated that tailings and slag based geopolymers has high compressive strength . As the tailings in slag is 80%, the compressive strength in 7d can reach 45.10 MPa . As the Na2SiO3 to NaOH ratio is 0.5, the compressive strength in 7d can reach 63.79 MPa. As the NaOH and sodium silicate concentration in the solution is 35%, the compressive strength in 7d can reach 38.35 MPa respectively; As the curing period is 14 d , the compressive strength can reach 71.25 MPa. As the steel scoria in solid is 20%, the compressive strength in 7d can reach 61.86 MPa respectively.


Alloy Digest ◽  
2019 ◽  
Vol 68 (4) ◽  

Abstract Sandvik APM 2730 is a powder metallurgical alloyed hot-isostatic-pressed high-speed tool steel with abrasive wear resistance and high-compressive strength. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-763. Producer or source: Sandvik Steel Company.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2911
Author(s):  
Margarida Gonçalves ◽  
Inês Silveirinha Vilarinho ◽  
Marinélia Capela ◽  
Ana Caetano ◽  
Rui Miguel Novais ◽  
...  

Ordinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator. For the first time, mortars in which the commercial sand was replaced by two exhausted sands from biomass boilers (CA and CT) were developed. Firstly, the characterization of the slag and sands (aggregates) was performed. After, the AAMs fresh and hardened state properties were evaluated, being the characterization complemented by FTIR and microstructural analysis. The binder and the mortars prepared with commercial sand presented high compressive strength values after 28 days of curing-56 MPa and 79 MPa, respectively. The mortars developed with exhausted sands exhibit outstanding compressive strength values, 86 and 70 MPa for CT and CA, respectively, and the other material’s properties were not affected. Consequently, this work proved that high compressive strength waste-based one-part AAMs mortars can be produced and that it is feasible to use another waste as aggregate in the mortar’s formulations: the exhausted sands from biomass boilers.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2011 ◽  
Vol 335-336 ◽  
pp. 1454-1458
Author(s):  
Jing Xian Zhang ◽  
Bi Qin Chen ◽  
Dong Liang Jiang ◽  
Qing Ling Lin ◽  
Zhong Ming Chen ◽  
...  

In the present work, porous HA scaffolds with well controlled pore size, porosity and high compressive strength were prepared by aqueous gelcasting. PMMA beads with different size were used as the pore forming agent. The compositions, microstructure and properties of porous HA bioceramics were analyzed by XRD, SEM, Hg porosimetry etc. The mechanical properties were also tested. For scaffolds with the porosity as 70%, the average compressive strength was 11.9±1.7 MPa. Results showed that glecasting process can be used for the preparation of porous HA biomaterials with well controlled pore size and improved mechanical properties.


2012 ◽  
Vol 174-177 ◽  
pp. 135-139
Author(s):  
Qing Bo Tian ◽  
Li Zong Chen ◽  
Li Na Xu ◽  
Yong Guang Fang

A brick material was prepared with marble wastes as main raw material by pressure forming and water-curing at room temperature. With the increases of the amounts of water additions, the compressive strength increased gradually and obtained a highest value of 34.8MPa in the sample of the ratio of cement: wastes=20:100 at 17.0% water addition, above which the strength had an adverse change and decreased. The addition of glass fiber had small effects on the strength, water absorbing rate and density comparing with that of wood flour. The strengths of sample had changed obviously with the increment of the forming pressures. However, the strength would fall because of the lamination caused by the recovering effects of the wood flour in the sample with replacement of the wood flour to marble wastes, as the forming pressures were higher than 5.0 MPa.


2019 ◽  
Vol 25 (4) ◽  
pp. 43-49
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
ANA CASANDRA SEBE

The paper presents an aluminum foam experimental technique using the microwave energy. The raw material was recycling aluminum waste processed by ecological melting and gas atomizing to obtain the fine powder required in the foaming process. The powder mixture was completed with dolomite as a foaming agent. The products had a fine and homogeneous porous structure (pore size between 0.4-0.9 mm). The density (1.17-1.19 g/cm3), the compressive strength (6.83-7.01 MPa) and the thermal conductivity (5.71-5.84 W/m·K) had values almost similar to the foams made by conventional methods.


2013 ◽  
Vol 30 ◽  
pp. 45-51 ◽  
Author(s):  
Arbind Pathak ◽  
Vinay Kumar Jha

Recently, the demolition of old houses and the construction of new buildings in Kathmandu valley are in the peak which in turn generates a huge amount of construction waste. There are two major types of construction wastes which are burden for disposal namely cement-sand-waste (CSW) and the coal fly ash (CFA). These construction wastes are rich source of alumino-silicate and thus used as raw material for the synthesis of geopolymer in this study. Geopolymers have been synthesized from CSW and CFA using NaOH-KOH and Na2SiO3 as activators. Some parameters like alkali concentration, amount of Na2SiO3 and curing time have been varied in order to improve the quality of geopolymeric product. The geopolymerization process has been carried out using 3-8M KOH/NaOH solutions, Na2SiO3 to CFA and CSW mass ratio of 0.25-2.00 and curing time variation from 5-28 days. The curing temperature was fixed at 40ºC in all the cases. 6M NaOH and 7M KOH solutions were found appropriate alkali concentrations while the ratio of sodium silicate to CSW and CFA of 0.5 and 1.75 respectively were found suitable mass ratio for the process of geopolymer synthesis. The maximum compressive strength of only 7.3 MPa after 15 days curing time with CSW raw material was achieved while with CFA, the compressive strength was found to be 41.9 MPa with increasing the curing time up to 28 days.DOI: http://dx.doi.org/10.3126/jncs.v30i0.9334Journal of Nepal Chemical Society Vol. 30, 2012 Page:  45-51 Uploaded date: 12/16/2013    


2016 ◽  
Vol 697 ◽  
pp. 433-436
Author(s):  
Shi Chao Zhang ◽  
Yu Feng Chen ◽  
Wei Wu ◽  
Hao Ran Sun ◽  
Guang Hai Wang ◽  
...  

In this paper, fumed nano-silica as the main raw material, nano-silica insulation materials were prepared by the dry processing. Research on humidity-reinforcement of nano-Silica insulation materials has been carried out and analyzed. When hygroscopicity of samples reach to 23%, the compressive strength 1.65MPa is at twice the one without high humidity-reinforcement, while the thermal conductivities are almost the same. Then, the action mechanism of high humidity-reinforcement method was analyzed. In humidity-reinforcement method, as vapor enters, silica sol is formed in the gap between one aggregate particle and another, and various condensation polymerization occurred in the drying process, which lead to aggregates connection and compressive strength improvement.


Sign in / Sign up

Export Citation Format

Share Document