scholarly journals Ion Transport and Regulation: Nanoscale Ion Regulation in Wood‐Based Structures and Their Device Applications (Adv. Mater. 28/2021)

2021 ◽  
Vol 33 (28) ◽  
pp. 2170221
Author(s):  
Chaoji Chen ◽  
Liangbing Hu
Author(s):  
Joanna L. Batstone

Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


Author(s):  
S. Hillyard ◽  
Y.-P. Chen ◽  
J.D. Reed ◽  
W.J. Schaff ◽  
L.F. Eastman ◽  
...  

The positions of high-order Laue zone (HOLZ) lines in the zero order disc of convergent beam electron diffraction (CBED) patterns are extremely sensitive to local lattice parameters. With proper care, these can be measured to a level of one part in 104 in nanometer sized areas. Recent upgrades to the Cornell UHV STEM have made energy filtered CBED possible with a slow scan CCD, and this technique has been applied to the measurement of strain in In0.2Ga0.8 As wires.Semiconductor quantum wire structures have attracted much interest for potential device applications. For example, semiconductor lasers with quantum wires should exhibit an improvement in performance over quantum well counterparts. Strained quantum wires are expected to have even better performance. However, not much is known about the true behavior of strain in actual structures, a parameter critical to their performance.


Author(s):  
M G. Norton ◽  
E.S. Hellman ◽  
E.H. Hartford ◽  
C.B. Carter

The bismuthates (for example, Ba1-xKxBiO3) represent a class of high transition temperature superconductors. The lack of anisotropy and the long coherence length of the bismuthates makes them technologically interesting for superconductor device applications. To obtain (100) oriented Ba1-xKxBiO3 films on (100) oriented MgO, a two-stage deposition process is utilized. In the first stage the films are nucleated at higher substrate temperatures, without the potassium. This process appears to facilitate the formation of the perovskite (100) orientation on (100) MgO. This nucleation layer is typically between 10 and 50 nm thick. In the second stage, the substrate temperature is reduced and the Ba1-xKxBiO3 is grown. Continued growth of (100) oriented material is possible at the lower substrate temperature.


2001 ◽  
Vol 120 (5) ◽  
pp. A532-A532
Author(s):  
R LARSEN ◽  
M HANSEN ◽  
N BINSLEV ◽  
A MERTZNIELSEN
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document