Adsorption of Gas Molecules on Graphene-Like ZnO Nanosheets: The Roles of Gas Concentration, Layer Number, and Heterolayer

2017 ◽  
Vol 4 (21) ◽  
pp. 1700647 ◽  
Author(s):  
Ruishen Meng ◽  
Xiaoling Lu ◽  
Sven Ingebrandt ◽  
Xianping Chen
Author(s):  
Rodion Groll

A model describing the suspension diffusion process of gas molecules in liquid media is presented in this paper. This process is not yet solved by a satisfactory model for micro-scale applications at this time. The new model allows the simulation of diffusion processes in continuous media considering the molecular mass flux in a suspension/carrier phase mixture. Modelling the diffusion of gas suspensions in liquid media the saturation mass ratio is reached near the liquid/gas surface very quickly. The increase of gas concentration in the liquid domain depends on the elapsed time and the physical properties of gas and liquid media. The molecular gas velocity is described by a Maxwell probability density function. Based on this spectral method macroscopic physical values are modelled to describe time-dependent global concentration changes. Modelling the gas species diffusion the molecular convection is considered. Modelling the mass flux of the molecular gas suspension characteristic time scales are developed describing the completion level of the saturation progress based on non-dimensional formulations of the molecular convection equation. The present model is implemented in a CFD code and validated by a family of parametric simulation results depending on the saturation mass ratio of the suspended gas phase. This simulation result array shows the dependency of saturation time and saturation mass ratio of the suspended gas molecules. Based on this relation macroscopic diffusion processes in micromixers and microchannels are described with this model and without an extra solution of molecule trajectories or spectral fields of molecule velocity.


Author(s):  
M. Pan ◽  
J.M. Cowley

Electron microdiffraction patterns, obtained when a small electron probe with diameter of 10-15 Å is directed to run parallel to and outside a flat crystal surface, are sensitive to the surface nature of the crystals. Dynamical diffraction calculations have shown that most of the experimental observations for a flat (100) face of a MgO crystal, such as the streaking of the central spot in the surface normal direction and (100)-type forbidden reflections etc., could be explained satisfactorily by assuming a modified image potential field outside the crystal surface. However the origin of this extended surface potential remains uncertain. A theoretical analysis by Howie et al suggests that the surface image potential should have a form different from above-mentioned image potential and also be smaller by several orders of magnitude. Nevertheless the surface potential distribution may in practice be modified in various ways, such as by the adsorption of a monolayer of gas molecules.


Author(s):  
Klaus-Ruediger Peters

Only recently it became possible to expand scanning electron microscopy to low vacuum and atmospheric pressure through the introduction of several new technologies. In principle, only the specimen is provided with a controlled gaseous environment while the optical microscope column is kept at high vacuum. In the specimen chamber, the gas can generate new interactions with i) the probe electrons, ii) the specimen surface, and iii) the specimen-specific signal electrons. The results of these interactions yield new information about specimen surfaces not accessible to conventional high vacuum SEM. Several microscope types are available differing from each other by the maximum available gas pressure and the types of signals which can be used for investigation of specimen properties.Electrical non-conductors can be easily imaged despite charge accumulations at and beneath their surface. At high gas pressures between 10-2 and 2 torr, gas molecules are ionized in the electrical field between the specimen surface and the surrounding microscope parts through signal electrons and, to a certain extent, probe electrons. The gas provides a stable ion flux for a surface charge equalization if sufficient gas ions are provided.


Author(s):  
H. K. Birnbaum ◽  
I. M. Robertson

Studies of the effects of hydrogen environments on the deformation and fracture of fcc, bcc and hep metals and alloys have been carried out in a TEM environmental cell. The initial experiments were performed in the environmental cell of the HVEM facility at Argonne National Laboratory. More recently, a dedicated environmental cell facility has been constructed at the University of Illinois using a JEOL 4000EX and has been used for these studies. In the present paper we will describe the general design features of the JEOL environmental cell and some of the observations we have made on hydrogen effects on deformation and fracture.The JEOL environmental cell is designed to operate at 400 keV and below; in part because of the available accelerating voltage of the microscope and in part because the damage threshold of most materials is below 400 keV. The gas pressure at which chromatic aberration due to electron scattering from the gas molecules becomes excessive does not increase rapidly with with accelerating voltage making 400 keV a good choice from that point of view as well. A series of apertures were placed above and below the cell to control the pressures in various parts of the column.


Author(s):  
Heinz Gross ◽  
Katarina Krusche ◽  
Peter Tittmann

Freeze-drying followed by heavy metal shadowing is a long established and straight forward approach to routinely study the structure of dehydrated macromolecules. Very thin specimens such as isolated membranes or single macromolecules are directly adsorbed on C-coated grids. After rapid freezing the grids are transferred into a suitable vacuum equipment for freeze-drying and heavy metal shadowing.To improve the resolution power of shadowing films we introduced shadowing at very low specimen temperature (−250°C). To routinely do that without the danger of contamination we developed in collaboration with Balzers an UHV (p≤10-9 mbar) machine (BAF500K, Fig.2). It should be mentioned here that at −250°C the specimen surface acts as effective cryopump for practically all impinging residual gas molecules from the residual gas atmosphere.Common high resolution shadowing films (Pt/C, Ta/W) have to be protected from alterations due to air contact by a relatively thick C-backing layer, when transferred via atmospheric conditions into the TEM. Such an additional C-coat contributes disturbingly to the contrast at high resolution.


2018 ◽  
Author(s):  
Julia Miguel-Donet ◽  
Javier López-Cabrelles ◽  
Nestor Calvo Galve ◽  
Eugenio Coronado ◽  
Guillermo Minguez Espallargas

<p>Modification of the magnetic properties in a solid-state material upon external stimulus has attracted much attention in the recent years for their potential applications as switches and sensors. Within the field of coordination polymers, gas sorption studies typically focus on porous solids, with the gas molecules accommodating in the channels. Here we present a 1D non-porous coordination polymer capable of incorporating HCl gas molecules, which not only causes a reordering of its atoms in the solid state but also provokes dramatic changes in the magnetic behaviour. Subsequently, a further solid-gas transformation can occur with the extrusion of HCl gas molecules causing a second structural rearrangement which is also accompanied by modification in the magnetic path between the metal centres. Unequivocal evidence of the two-step magnetostructural transformation is provided by X-ray single-crystal diffraction.</p>


Author(s):  
QI CHEN ◽  
◽  
JINTAO SUN ◽  
JIANYU LIU ◽  
BAOMING ZHAO ◽  
...  

Plasma-assisted ignition and combustion, widely applied in gas turbines, scramjets, and internal combustion engines, has been considered as a promising technique in shortening ignition delay time, improving combustion energy efficiency, and reducing emission. Nonequilibrium plasma can excite the gas molecules to higher energy states, directly dissociate or ionize the molecules and, thereby, has the potential to produce reactive species at residence time and location in a combustible mixture and then to efficiently accelerate the overall pyrolysis, oxidation, and ignition. Previous studies have demonstrated the effectiveness of plasma-assisted combustion by using direct current, alternating currant, microwave, radio frequency, and pulsed nanosecond discharge (NSD). Due to the complicated interaction between plasma and combustion in different types of plasma, detailed plasma-combustion chemistry is still not well understood.


2019 ◽  
Author(s):  
Gede H Cahyana

Indoor air pollution in closed room is one of the air pollution that gives serious threats to human health. One of them come from vehicle gas emissions in closed parking area. This research identifies and analyses CO concentration measured in Mall X parking man’s breathing zone with closed parking area and in Mall Y semi-opened parking area. CO measurement carried out by passive sampling method using Personal Dosimeter Tubes. Measurement result of CO gas concentration to parking man’s breathing zone in Mall X was 25 – 81,25 ppm with average value in 50 ± 26,15 ppm. Meanwhile CO gas concentration in Mall Y gave result 3,13 – 12,5 ppm with average value in 7,88 ± 4,36 ppm. Correlation value between CO concentration and its intake in Mall X area was 0,9983, meanwhile correlation value between CO concentration and its intake in Mall Y area was 0,9903. It was concluded that CO gas concentration measured in parking man’s breathing zone influenced the differences of CO intake value in significance value.


Sign in / Sign up

Export Citation Format

Share Document