Optical Resonance Coupled with Electronic Structure Engineering toward High‐Sensitivity Photodetectors

2021 ◽  
pp. 2101374
Author(s):  
Mengmeng Yang ◽  
Jiahao Yan ◽  
Churong Ma ◽  
Wei Gao ◽  
Yuchen Zhou ◽  
...  
2021 ◽  
Vol 2 (19) ◽  
pp. 6267-6271 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Extraordinary tuning of electronic structure of SnTe by Bi in the presence of Pb as a co-adjuvant dopant. Synergistic effect of resonance level, increase in the band gap, valence and conduction sub-bands convergence leads to enhanced TE performance.


2019 ◽  
Vol 7 (33) ◽  
pp. 19531-19538 ◽  
Author(s):  
Qi Hu ◽  
Guomin Li ◽  
Xiaowan Huang ◽  
Ziyu Wang ◽  
Hengpan Yang ◽  
...  

The electronic structures of single atomic Ru (SA-Ru) were suitably optimized by nearby Ru NPs for boosting the hydrogen evolution reaction (HER) over SA-Ru.


2019 ◽  
Vol 7 (16) ◽  
pp. 4817-4821 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Resonance states due to Bi and In co-doping, band gap enlargement, and a reduced valence-band offset in SnTe lead to a record high room-temperature ZT.


2020 ◽  
Vol 32 (15) ◽  
pp. 6326-6337 ◽  
Author(s):  
Kateřina Dohnalová ◽  
Prokop Hapala ◽  
Kateřina Kůsová ◽  
Ivan Infante

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haocheng Sun ◽  
Yuan Shang ◽  
Yanmei Yang ◽  
Meng Guo

Phosphorene becomes an important member of the layered nanomaterials since its discovery for the fabrication of nanodevices. In the experiments, pristine phosphorene shows p-type semiconducting with no exception. To reach its full capability, n-type semiconducting is a necessity. Here, we report the electronic structure engineering of phosphorene by surface metal atom doping. Five metal elements, Cu, Ag, Au, Li, and Na, have been considered which could form stable adsorption on phosphorene. These elements show patterns in their electron configuration with one valence electron in their outermost s-orbital. Among three group 11 elements, Cu can induce n-type degenerate semiconducting, while Ag and Au can only introduce localized impurity states. The distinct ability of Cu, compared to Ag and Au, is mainly attributed to the electronegativity. Cu has smaller electronegativity and thus denotes its electron to phosphorene, upshifting the Fermi level towards conduction band, resulting in n-type semiconducting. Ag and Au have larger electronegativity and hardly transfer electrons to phosphorene. Parallel studies of Li and Na doping support these findings. In addition, Cu doping effectively regulates the work function of phosphorene, which gradually decreases upon increasing Cu concentration. It is also interesting that Au can hardly change the work function of phosphorene.


2020 ◽  
Vol 44 (41) ◽  
pp. 17664-17670
Author(s):  
D. Krishna Bhat ◽  
U. Sandhya Shenoy

Electronic-structure engineering of GeTe:Zn doping enhances thermoelectric properties via synergy of resonance states, increase in band gap and hyper-convergence.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Timur Ermatov ◽  
Roman E. Noskov ◽  
Andrey A. Machnev ◽  
Ivan Gnusov ◽  
Vsevolod Аtkin ◽  
...  

Abstract The state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte’s refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS). The operating principle relies on detecting changes in the transmission of a hollow-core microstructured optical fibre when a bioanalyte is streamed through it via liquid cells. IMOS offers a unique opportunity to measure the refractive index at 42 wavelengths, with a sensitivity up to ~3000 nm per refractive index unit (RIU) and a figure of merit reaching 99 RIU−1 in the visible and near-infra-red spectral ranges. We apply this technique to determine the concentration and refractive index dispersion for bovine serum albumin and show that the accuracy meets clinical needs.


2020 ◽  
Vol 12 (32) ◽  
pp. 36110-36118
Author(s):  
Yi Cai ◽  
Rodney Chua ◽  
Zongkui Kou ◽  
Hao Ren ◽  
Du Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document