Resonance levels in GeTe thermoelectrics: zinc as a new multifaceted dopant

2020 ◽  
Vol 44 (41) ◽  
pp. 17664-17670
Author(s):  
D. Krishna Bhat ◽  
U. Sandhya Shenoy

Electronic-structure engineering of GeTe:Zn doping enhances thermoelectric properties via synergy of resonance states, increase in band gap and hyper-convergence.

2021 ◽  
Vol 2 (19) ◽  
pp. 6267-6271 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Extraordinary tuning of electronic structure of SnTe by Bi in the presence of Pb as a co-adjuvant dopant. Synergistic effect of resonance level, increase in the band gap, valence and conduction sub-bands convergence leads to enhanced TE performance.


2019 ◽  
Vol 7 (16) ◽  
pp. 4817-4821 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Resonance states due to Bi and In co-doping, band gap enlargement, and a reduced valence-band offset in SnTe lead to a record high room-temperature ZT.


2003 ◽  
Vol 793 ◽  
Author(s):  
Navid Soheilnia ◽  
Holger Kleinke

ABSTRACTMo3Sb7 may be chemically modified to become semiconducting by replacing two Sb atoms with two Te atoms (per formula unit). This material may be an attractive candidate for the thermoelectric energy conversion, as its thermal conductivity may be lowered by creating the rattling effect upon intercalation of small cations, and its band structure may be tailored, i.e. the band gap size modified. The higher the Te content and the higher the cation amount, the smaller is the band gap, which can virtually reach any value below 0.5 eV.


NANO ◽  
2006 ◽  
Vol 01 (02) ◽  
pp. 115-138 ◽  
Author(s):  
KAY HYEOK AN ◽  
YOUNG HEE LEE

A review for controlling electronic structures and chirality separation of carbon nanotubes (CNTs) is presented with the subject divided into three topics. The first topic introduces the electronic structures of CNTs and the analytical techniques to identify the chirality of CNTs. The second topic discusses band gap engineering techniques using the sidewall functionalization of CNTs. The third topic concerns several approaches in chiral and diameter-dependent separation of CNTs. The electronic-structure engineering is of critical importance for a variety of technological applications of CNTs including, for example, field-effect transistor, chemical/bio-nanosensors, the electrical conductivity and charge dissipation in polymer/CNT composites, and flexible transparent conducting films. This paper is intended to concisely review the recent advances in the experimental and theoretical CNT researches concerned with the band gap engineering and chiral separation techniques of CNTs.


RSC Advances ◽  
2019 ◽  
Vol 9 (17) ◽  
pp. 9522-9532 ◽  
Author(s):  
Sajad Ahmad Dar ◽  
Ramesh Sharma ◽  
Vipul Srivastava ◽  
Umesh Kumar Sakalle

In the present paper, double perovskite Ba2InTaO6 was investigated in terms of its structural, electronic, optical, elastic, mechanical, thermodynamic and thermoelectric properties using density-functional theory (DFT).


2015 ◽  
Vol 17 (17) ◽  
pp. 11229-11233 ◽  
Author(s):  
Yong Liu ◽  
Wei Xu ◽  
Da-Bo Liu ◽  
Meijuan Yu ◽  
Yuan-Hua Lin ◽  
...  

The performance of Ge doped In2O3 thermoelectric materials is enhanced via band structure engineering and phonon suppression.


2019 ◽  
Author(s):  
Victor Y. Suzuki ◽  
Luís Henrique Cardozo Amorin ◽  
Natália H. de Paula ◽  
Anderson R. Albuquerque ◽  
Julio Ricardo Sambrano ◽  
...  

<p>We report, for the first time, new insights into the nature of the band gap of <a>CuGeO<sub>3</sub> </a>(CGO) nanocrystals synthesized from a microwave-assisted hydrothermal method in the presence of citrate. To the best of our knowledge, this synthetic approach has the shortest reaction time and it works at the lowest temperatures reported in the literature for the preparation of these materials. The influence of the surfactant on the structural, electronic, optical, and photocatalytic properties of CGO nanocrystals is discussed by a combination of experimental and theoretical approaches, and that results elucidates the nature of the band gap of synthetized CGO nanocrystals. We believe that this particular strategy is one of the most critical parameters for the development of innovative applications and that result could shed some light on the emerging material design with entirely new properties.</p> <p><b> </b></p>


Sign in / Sign up

Export Citation Format

Share Document