scholarly journals Spider‐Inspired Electrohydraulic Actuators for Fast, Soft‐Actuated Joints

2021 ◽  
pp. 2100916
Author(s):  
Nicholas Kellaris ◽  
Philipp Rothemund ◽  
Yi Zeng ◽  
Shane K. Mitchell ◽  
Garrett M. Smith ◽  
...  
2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Midhun S. Menon ◽  
V. C. Ravi ◽  
Ashitava Ghosal

Hyper-redundant snakelike serial robots are of great interest due to their application in search and rescue during disaster relief in highly cluttered environments and recently in the field of medical robotics. A key feature of these robots is the presence of a large number of redundant actuated joints and the associated well-known challenge of motion planning. This problem is even more acute in the presence of obstacles. Obstacle avoidance for point bodies, nonredundant serial robots with a few links and joints, and wheeled mobile robots has been extensively studied, and several mature implementations are available. However, obstacle avoidance for hyper-redundant snakelike robots and other extended articulated bodies is less studied and is still evolving. This paper presents a novel optimization algorithm, derived using calculus of variation, for the motion planning of a hyper-redundant robot where the motion of one end (head) is an arbitrary desired path. The algorithm computes the motion of all the joints in the hyper-redundant robot in a way such that all its links avoid all obstacles present in the environment. The algorithm is purely geometric in nature, and it is shown that the motion in free space and in the vicinity of obstacles appears to be more natural. The paper presents the general theoretical development and numerical simulations results. It also presents validating results from experiments with a 12-degree-of-freedom (DOF) planar hyper-redundant robot moving in a known obstacle field.


2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Fattah Hanafi Sheikhha ◽  
Ali Afzalaghaeinaeini ◽  
Jaho Seo

A hydraulic excavator consists of multiple electrohydraulic actuators (EHA). Due to uncertainties and nonlinearities in EHAs, it is challenging to devise a proper control strategy. To tackle this issue, a major goal of our study is to provide an efficient control strategy to minimize tracking errors of the bucket tip position for autonomous excavation. To accomplish the goal, the study offers a collaboration of PID and fuzzy controllers that are used to compensate for contour errors and achieve accurate actuator position control, respectively. Co-simulation models including control algorithms and hydraulic components were created using Matlab and Amesim to validate the performance of the designed controllers. Simulations indicate that the proposed method enables achieving accurate tracking control for autonomous excavation with small tracking errors despite the nonlinear characteristics of the hydraulic excavator system.


2021 ◽  
Author(s):  
Purnendu ◽  
Sasha Novack ◽  
Eric Acome ◽  
Mirela Alistar ◽  
Christoph Keplinger ◽  
...  

Author(s):  
Antonio Ruiz ◽  
Francisco Campa Gomez ◽  
Constantino Roldan-Paraponiaris ◽  
Oscar Altuzarra

The present work deals with the development of a hybrid manipulator of 5 degrees of freedom for milling moulds for microlenses. The manipulator is based on a XY stage under a 3PRS compliant parallel mechanism. The mechanism takes advantage of the compliant joints to achieve higher repetitiveness, smoother motion and a higher bandwidth, due to the high precision demanded from the process, under 0.1 micrometers. This work is focused on the kinematics of the compliant stage of the hybrid manipulator. First, an analysis of the workspace required for the milling of a single mould has been performed, calculating the displacements required in X, Y, Z axis as well as two relative rotations between the tool and the workpiece from a programmed toolpath. Then, the 3PRS compliant parallel mechanism has been designed using FEM with the objective of being stiff enough to support the cutting forces from the micromilling, but flexible enough in the revolution and spherical compliant joints to provide the displacements needed. Finally, a prototype of the 3PRS compliant mechanism has been built, implementing a motion controller to perform translations in Z direction and two rotations. The resulting displacements in the end effector and the actuated joints have been measured and compared with the FEM calculations and with the rigid body kinematics of the 3PRS.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 132
Author(s):  
Paolo Righettini ◽  
Roberto Strada ◽  
Filippo Cortinovis

Several industrial robotic applications that require high speed or high stiffness-to-inertia ratios use parallel kinematic robots. In the cases where the critical point of the application is the speed, the compliance of the main mechanical transmissions placed between the actuators and the parallel kinematic structure can be significantly higher than that of the parallel kinematic structure itself. This paper deals with this kind of system, where the overall performance depends on the maximum speed and on the dynamic behavior. Our research proposes a new approach for the investigation of the modes of vibration of the end-effector placed on the robot structure for a system where the transmission’s compliance is not negligible in relation to the flexibility of the parallel kinematic structure. The approach considers the kinematic and dynamic coupling due to the parallel kinematic structure, the system’s mass distribution and the transmission’s stiffness. In the literature, several papers deal with the dynamic vibration analysis of parallel robots. Some of these also consider the transmissions between the motors and the actuated joints. However, these works mainly deal with the modal analysis of the robot’s mechanical structure or the displacement analysis of the transmission’s effects on the positioning error of the end-effector. The discussion of the proposed approach takes into consideration a linear delta robot. The results show that the system’s natural frequencies and the directions of the end-effector’s modal displacements strongly depend on its position in the working space.


Robotica ◽  
2013 ◽  
Vol 32 (6) ◽  
pp. 889-905 ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai ◽  
Giovanni Legnani

SUMMARYA non-overconstrained three-DOF parallel orientation mechanism that is kinematically equivalent to the Agile Eye is presented in this paper. The output link (end-effector) of the mechanism is connected to the base by one spherical joint and by another three identical legs. Each leg comprises of, in turns from base, a revolute joint, a universal joint, and three prismatic joints. The three lower revolute joints are active joints, while all other joints are passive ones. Based on a special configuration, some three projective angles of the end-effector coordinates are fully decoupled with respect to the input actuated joints, that is, by actuating any revolute joint the end-effector rotates in such a way that the corresponding projective angle changes with the same angular displacement. The fully decoupled motion is analyzed geometrically and proved theoretically. Besides, the inverse and direct kinematics solutions of the mechanism are provided based on the geometric reasoning and theoretical proof.


2005 ◽  
Vol 29 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Flavio Firmani ◽  
Ron P. Podhorodeski

A study of the effect of including a redundant actuated branch on the existence of force-unconstrained configurations for a planar parallel layout of joints is presented1. Two methodologies for finding the force-unconstrained poses are described and discussed. The first method involves the differentiation of the nonlinear kinematic constraints of the input and output variables with respect to time. The second method makes use of the reciprocal screws associated with the actuated joints. The force-unconstrained poses of non-redundantly actuated planar parallel manipulators can be mathematically expressed by means of a polynomial in terms of the three variables that define the dimensional space of the planar manipulator, i.e., the location and orientation of the end-effector. The inclusion of redundant actuated branches leads to a system of polynomials, i.e., one additional polynomial for each redundant branch added. Elimination methods are employed to reduce the number of variables by one for every additional polynomial. This leads to a higher order polynomial with fewer variables. The roots of the resulting polynomial describe the force-unconstrained poses of the manipulator. For planar manipulators it is shown that one order of infinity of force-unconstrained configurations is eliminated for every actuated branch, beyond three, added. As an example, the four-branch revolute-prismatic-revolute mechanism (4-RPR), where the prismatic joints are actuated, is presented.


Author(s):  
Nitish Kumar ◽  
Olivier Piccin ◽  
Bernard Bayle

This paper deals with the dimensional synthesis of a novel parallel manipulator for medical applications. This parallel mechanism has a novel 2T2R mobility derived from the targeted application of needle manipulation. The kinematic design of this 2T2R manipulator and its novelty are illustrated in relation to the percutaneous procedures. Due to the demanding constraints on its size and compactness, achieving a large workspace especially in orientation, is a rather difficult task. The workspace size and kinematic constraint analysis are considered for the dimensional synthesis of this 2T2R parallel mechanism. A dimensional synthesis algorithm based on the screw theory and the geometric analysis of the singularities is described. This algorithm also helps to eliminate the existence of voids inside the workspace. The selection of the actuated joints is validated. Finally, the dimensions of the structural parameters of the mechanism are calculated for achieving the required workspace within the design constraints of size, compactness and a preliminary prototype without actuators is presented.


Robotica ◽  
2011 ◽  
Vol 30 (3) ◽  
pp. 379-388 ◽  
Author(s):  
Roger Boudreau ◽  
Xu Mao ◽  
Ron Podhorodeski

SUMMARYIn this work, accuracy enhancement through backlash elimination is considered. When a nonredundantly actuated parallel manipulator is subjected to a wrench while following a trajectory, required actuator torque switching (going from positive to negative or vice versa) may occur. If backlash is present in the actuation hardware for a manipulator, torque switching compromises accuracy. When in-branch redundant actuation is added, a pseudoinverse torque solution requires smaller joint torques, but torque switching may still occur. A method is presented where concepts of exploiting a nullspace basis of the joint torques are used to ensure that single sense joint torques can be achieved for the actuated joints. The same sense torque solutions are obtained using nonlinear optimization. The methodology is applied to several examples simulating parallel manipulators in machining applications.


Sign in / Sign up

Export Citation Format

Share Document