scholarly journals Enhanced Thermoelectric Performance of Ba 8 Ga 16 Ge 30 Clathrate by Modulation Doping and Improved Carrier Mobility

2020 ◽  
pp. 2000782
Author(s):  
Yifei Zhang ◽  
Joakim Brorsson ◽  
Ren Qiu ◽  
Anders E. C. Palmqvist
2014 ◽  
Vol 136 (39) ◽  
pp. 13902-13908 ◽  
Author(s):  
Yan-Ling Pei ◽  
Haijun Wu ◽  
Di Wu ◽  
Fengshan Zheng ◽  
Jiaqing He

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2486
Author(s):  
Dexun Xie ◽  
Jing Xiao ◽  
Quanwei Li ◽  
Tongchao Liu ◽  
Jinjia Xu ◽  
...  

Conjugated polymers with narrower bandgaps usually induce higher carrier mobility, which is vital for the improved thermoelectric performance of polymeric materials. Herein, two indacenodithiophene (IDT) based donor–acceptor (D-A) conjugated polymers (PIDT-BBT and PIDTT-BBT) were designed and synthesized, both of which exhibited low-bandgaps. PIDTT-BBT showed a more planar backbone and carrier mobility that was two orders of magnitude higher (2.74 × 10−2 cm2V−1s−1) than that of PIDT-BBT (4.52 × 10−4 cm2V−1s−1). Both exhibited excellent thermoelectric performance after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, where PIDTT-BBT exhibited a larger conductivity (0.181 S cm−1) and a higher power factor (1.861 μW m−1 K−2) due to its higher carrier mobility. The maximum power factor of PIDTT-BBT reached 4.04 μW m−1 K−2 at 382 K. It is believed that conjugated polymers with a low bandgap are promising in the field of organic thermoelectric materials.


Nanoscale ◽  
2019 ◽  
Vol 11 (36) ◽  
pp. 16919-16927 ◽  
Author(s):  
Taemin Lee ◽  
Kyung Tae Park ◽  
Bon-Cheol Ku ◽  
Heesuk Kim

We have demonstrated wet-spun CNT fibers with high thermoelectric performance by optimizing the longitudinal carrier mobility.


Science ◽  
2019 ◽  
Vol 365 (6460) ◽  
pp. 1418-1424 ◽  
Author(s):  
Wenke He ◽  
Dongyang Wang ◽  
Haijun Wu ◽  
Yu Xiao ◽  
Yang Zhang ◽  
...  

Thermoelectric technology allows conversion between heat and electricity. Many good thermoelectric materials contain rare or toxic elements, so developing low-cost and high-performance thermoelectric materials is warranted. Here, we report the temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals. This behavior leads to synergistic optimization between effective mass (m*) and carrier mobility (μ) and can be boosted through introducing selenium (Se). This enhanced the power factor from ~30 to ~53 microwatts per centimeter per square kelvin (μW cm−1 K−2 at 300 K), while lowering the thermal conductivity after Se alloying. As a result, we obtained a maximum figure of merit ZT (ZTmax) of ~1.6 at 873 K and an average ZT (ZTave) of ~1.25 at 300 to 873 K in SnS0.91Se0.09 crystals. Our strategy for band manipulation offers a different route for optimizing thermoelectric performance. The high-performance SnS crystals represent an important step toward low-cost, Earth-abundant, and environmentally friendly thermoelectrics.


2017 ◽  
Vol 10 (7) ◽  
pp. 1590-1599 ◽  
Author(s):  
Guang-Kun Ren ◽  
Shan-Yu Wang ◽  
Ying-Cai Zhu ◽  
Kyle J. Ventura ◽  
Xing Tan ◽  
...  

Improved thermoelectric performance of BiCuSeO via increased bond covalency and carrier mobility.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Muchun Guo ◽  
Fengkai Guo ◽  
Jianbo Zhu ◽  
Li Yin ◽  
Qian Zhang ◽  
...  

CaMg2Bi2-based compounds, a kind of the representative compounds of Zintl phases, have uniquely inherent layered structure and hence are considered to be potential thermoelectric materials. Generally, alloying is a traditional and effective way to reduce the lattice thermal conductivity through the mass and strain field fluctuation between host and guest atoms. The cation sites have very few contributions to the band structure around the fermi level; thus, cation substitution may have negligible influence on the electric transport properties. What is more, widespread application of thermoelectric materials not only desires high ZT value but also calls for low-cost and environmentally benign constituent elements. Here, Ba substitution on cation site achieves a sharp reduction in lattice thermal conductivity through enhanced point defects scattering without the obvious sacrifice of high carrier mobility, and thus improves thermoelectric properties. Then, by combining further enhanced phonon scattering caused by isoelectronic substitution of Zn on the Mg site, an extraordinarily low lattice thermal conductivity of 0.51 W m-1 K-1 at 873 K is achieved in (Ca0.75Ba0.25)0.995Na0.005Mg1.95Zn0.05Bi1.98 alloy, approaching the amorphous limit. Such maintenance of high mobility and realization of ultralow lattice thermal conductivity synergistically result in broadly improvement of the quality factor β. Finally, a maximum ZT of 1.25 at 873 K and the corresponding ZTave up to 0.85 from 300 K to 873 K have been obtained for the same composition, meanwhile possessing temperature independent compatibility factor. To our knowledge, the current ZTave exceeds all the reported values in AMg2Bi2-based compounds so far. Furthermore, the low-cost and environment-friendly characteristic plus excellent thermoelectric performance also make the present Zintl phase CaMg2Bi2 more competitive in practical application.


2019 ◽  
Vol 125 (5) ◽  
pp. 055104 ◽  
Author(s):  
Zhengshang Wang ◽  
Huan He ◽  
Xudong Cui ◽  
Hangtian Liu ◽  
Wenbin Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document