Networks of High Performance Triboelectric Nanogenerators Based on Liquid-Solid Interface Contact Electrification for Harvesting Low-Frequency Blue Energy

2018 ◽  
Vol 8 (21) ◽  
pp. 1800705 ◽  
Author(s):  
Xiaoyi Li ◽  
Juan Tao ◽  
Xiandi Wang ◽  
Jing Zhu ◽  
Caofeng Pan ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingzi Sun ◽  
Qiuyang Lu ◽  
Zhong Lin Wang ◽  
Bolong Huang

AbstractThe charge transfer phenomenon of contact electrification even exists in the liquid–solid interface by a tiny droplet on the solid surface. In this work, we have investigated the contact electrification mechanism at the liquid–solid interface from the electronic structures at the atomic level. The electronic structures display stronger modulations by the outmost shell charge transfer via surface electrostatic charge perturbation than the inter-bonding-orbital charge transfer at the liquid–solid interface, supporting more factors being involved in charge transfer via contact electrification. Meanwhile, we introduce the electrochemical cell model to quantify the charge transfer based on the pinning factor to linearly correlate the charge transfer and the electronic structures. The pinning factor exhibits a more direct visualization of the charge transfer at the liquid–solid interface. This work supplies critical guidance for describing, quantifying, and modulating the contact electrification induced charge transfer systems in triboelectric nanogenerators in future works.


Nano Energy ◽  
2021 ◽  
pp. 106256
Author(s):  
Yongteng Qian ◽  
Jianmin Yu ◽  
Fangfang Zhang ◽  
Yingbo Kang ◽  
Chenliang Su ◽  
...  

2021 ◽  
Author(s):  
Yong-Mei Wang ◽  
Xinxin Zhang ◽  
Dingyi Yang ◽  
Liting Wu ◽  
Jiaojiao Zhang ◽  
...  

Abstract The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2 MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2 was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent electron-withdrawing abilities for high-performance TENGs.


2017 ◽  
Vol 202 ◽  
pp. 184-189 ◽  
Author(s):  
Yan Wang ◽  
Hongyu Zhu ◽  
Yanbo Chen ◽  
Xinming Wu ◽  
Wenzhi Zhang ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Stefano Markidis

Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challenging problems, including computing linear systems arising from PDEs, a task for which several traditional methods exist. In this work, we focus first on evaluating the potential of PINNs as linear solvers in the case of the Poisson equation, an omnipresent equation in scientific computing. We characterize PINN linear solvers in terms of accuracy and performance under different network configurations (depth, activation functions, input data set distribution). We highlight the critical role of transfer learning. Our results show that low-frequency components of the solution converge quickly as an effect of the F-principle. In contrast, an accurate solution of the high frequencies requires an exceedingly long time. To address this limitation, we propose integrating PINNs into traditional linear solvers. We show that this integration leads to the development of new solvers whose performance is on par with other high-performance solvers, such as PETSc conjugate gradient linear solvers, in terms of performance and accuracy. Overall, while the accuracy and computational performance are still a limiting factor for the direct use of PINN linear solvers, hybrid strategies combining old traditional linear solver approaches with new emerging deep-learning techniques are among the most promising methods for developing a new class of linear solvers.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 55577-55583 ◽  
Author(s):  
Seung Yong Lee ◽  
Chang Hyuck Choi ◽  
Min Wook Chung ◽  
Jae Hoon Chung ◽  
Seong Ihl Woo

In supercapacitors, one dimensional graphene ribbons which form net-like porous structure demonstrate low mass transfer resistance at low frequency region and a consequent efficient charge transferability.


2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


2020 ◽  
Vol 20 (3) ◽  
pp. 743-757
Author(s):  
Teng Ma ◽  
Xuezhuan Zhao

The chromatic transient visual evoked potential (CTVEP)-based brain-computer interface (BCI) can provide safer and more comfortable stimuli than the traditional VEP-based BCIs due to its low frequency change and no luminance variation in the visual stimulation. However, it still generates relatively few codes that correspond to input commands to control the outside devices, which limits its application in the practical BCIs to some extent. Aiming to obtain more codes, we firstly proposes a new time coding technique to CTVEP-based BCI by utilizing a combination of two 4-bit binary codes to construct four 8-bit binary codes to increase the control commands to extend its application in practice. In the experiment, two time-encoded isoluminant chromatic stimuli are combined to serve as different commands for BCI control, and the results show that the high performance based on the new time coding approach with the average accuracy up to 90.28% and average information transfer rate up to 27.78 bits/min for BCI can be achieved. It turns out that the BCI system based on the proposed method is feasible, stable and efficient, which makes the method very suitable for the practical application of BCIs, such as military, entertainment and medical enterprise.


Sign in / Sign up

Export Citation Format

Share Document