scholarly journals Molecular Level Insight into Enhanced n‐Type Transport in Solution‐Printed Hybrid Thermoelectrics

2019 ◽  
Vol 9 (13) ◽  
pp. 1803469 ◽  
Author(s):  
Edmond W. Zaia ◽  
Madeleine P. Gordon ◽  
Valerie Niemann ◽  
Jaeyoo Choi ◽  
Ruchira Chatterjee ◽  
...  
Keyword(s):  
Author(s):  
Tian Wu ◽  
Danyan Hu ◽  
Qingfen Wang

Abstract Background Noni (Morinda citrifolia Linn.) is a tropical tree that bears climacteric fruit. Previous observations and research have shown that the second day (2 d) after harvest is the most important demarcation point when the fruit has the same appearance as the freshly picked fruit (0 d); however, they are beginning to become water spot appearance. We performed a conjoint analysis of metabolome and transcriptome data for noni fruit of 0 d and 2 d to reveal what happened to the fruit at the molecular level. Genes and metabolites were annotated to KEGG pathways and the co-annotated KEGG pathways were used as a statistical analysis. Results We found 25 pathways that were significantly altered at both metabolic and transcriptional levels, including a total of 285 differentially expressed genes (DEGs) and 11 differential metabolites through an integrative analysis of transcriptomics and metabolomics. The energy metabolism and pathways originating from phenylalanine were disturbed the most. The upregulated resistance metabolites and genes implied the increase of resistance and energy consumption in the postharvest noni fruit. Most genes involved in glycolysis were downregulated, further limiting the available energy. This lack of energy led noni fruit to water spot appearance, a prelude to softening. The metabolites and genes related to the resistance and energy interacted and restricted each other to keep noni fruit seemingly hard within two days after harvest, but actually the softening was already unstoppable. Conclusions This study provides a new insight into the relationship between the metabolites and genes of noni fruit, as well as a foundation for further clarification of the post-ripening mechanism in noni fruit.


Author(s):  
Li Zhang ◽  
Ya‐Ling Ye ◽  
Xiao‐Ling Zhang ◽  
Xiang‐Hui Li ◽  
Qiao‐Hong Chen ◽  
...  

Chem ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 613-625 ◽  
Author(s):  
Yuhan Peng ◽  
Liangbing Wang ◽  
Qiquan Luo ◽  
Yun Cao ◽  
Yizhou Dai ◽  
...  

2019 ◽  
Vol 75 (a1) ◽  
pp. a268-a268
Author(s):  
Aparna Annamraju ◽  
Nicholas D. Smith ◽  
Loukas Petridis ◽  
Hugh O'Neill ◽  
Sai Venkatesh Pingali ◽  
...  

Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1263-1272 ◽  
Author(s):  
L. Maves ◽  
G. Schubiger

Drosophila imaginal discs, the precursors of the adult fly appendages, have been the subject of intensive developmental studies, particularly on cell determination. Cultured disc fragments are recognized not only for the ability to maintain their determined state through extra cell divisions but also for the ability to transdetermine, or switch to the determined state of a different disc. An understanding of transdetermination at a molecular level will provide further insight into the requirements for maintaining cell determination. We find that ectopic expression of the Drosophila gene wingless induces transdetermination of foreleg imaginal disc cells to wing cells. This transdetermination occurs in foreleg discs of developing larvae without disc fragmentation. The in situ-transdetermining cells localize to the dorsal region of the foreleg disc. This wingless-induced transdetermination event is remarkably similar to the leg-to-wing switch that occurs after leg disc culture. Thus we have identified a new approach to a molecular dissection of transdetermination.


Biochemistry ◽  
2014 ◽  
Vol 53 (50) ◽  
pp. 7969-7982 ◽  
Author(s):  
Ivan G. Pallares ◽  
Theodore C. Moore ◽  
Jorge C. Escalante-Semerena ◽  
Thomas C. Brunold

2011 ◽  
Vol 474-476 ◽  
pp. 943-948
Author(s):  
Shao Gui Wu ◽  
Hong Xia Guo

A dissipative particle dynamics simulation method is used to get insight into molecular-level details of vesicle fusion in this study. For simplicity, the simulation system contains water and amphiphiles. The fusion mechanism is investigated in detail. It is found that the whole fusion process is in well agreement with the “stalk-pore” hypothesis. The dynamics of vesicle fusion is analyzed by monitoring the time evolutions of morphologies.


Langmuir ◽  
2017 ◽  
Vol 33 (44) ◽  
pp. 12793-12803 ◽  
Author(s):  
Andrei Yu. Kostritskii ◽  
Dmitry A. Tolmachev ◽  
Natalia V. Lukasheva ◽  
Andrey A. Gurtovenko

Sign in / Sign up

Export Citation Format

Share Document