scholarly journals Agronomic performance of the lignocellulosic feedstock crop energy cane in the Texas Rolling Plains

2020 ◽  
Vol 112 (5) ◽  
pp. 3816-3831
Author(s):  
Pramod Pokhrel ◽  
Nithya Rajan ◽  
John Jifon ◽  
William Rooney ◽  
Russell Jessup ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5805
Author(s):  
Ankita Juneja ◽  
Deepak Kumar ◽  
Vijay Kumar Singh ◽  
Yadvika ◽  
Vijay Singh

Energy cane is an attractive lignocellulosic feedstock for processing into biofuels and bioproducts. A low-severity two-step hydrothermal pretreatment was investigated on energy cane for the production of monomeric sugar. Pretreatment temperature and time, in addition to the effect of disk milling, were observed for the glucose and xylose yields during hydrolysis. At residence times above 5 min in case of pretreatment at 200 °C, all of the hemicellulose was observed to be solubilized. The pretreatment condition of 200 °C for 10 min with disk milling was observed to provide the highest glucose concentration of 5.4%, and 200 °C for 5 min with disk milling provided the highest xylose concentration of 2.15%. The effect of disk milling in improving the sugar concentrations during hydrolysis was significant, especially at lower pretreatment temperatures and times. Low xylose yields at higher temperatures were attributed to the formation of degradation products at increased severity.


2020 ◽  
Vol 4 (1) ◽  
pp. 478-484
Author(s):  
Josimar Bento Simplício ◽  
Maria da Saúde Santos de Jesus ◽  
Rosa Honorato de Almeida

2020 ◽  
pp. 488-494
Author(s):  
Giovanna M. Aita ◽  
Young Hwan Moon

Xylooligosaccharides (XOS) is a group of emerging prebiotics that selectively stimulate the growth of advantageous gastrointestinal bacteria benefitting the host’s gut health and functionality. XOS can achieve positive biological effects at low daily doses and low caloric content, properties that are the same or more desirable than the already established prebiotics. XOS are present in plants in very low amounts so there is a great opportunity to isolate XOS with varying degrees of polymerization from the hemicellulose (xylan) fraction of lignocellulosic materials (e.g., bagasse), a source that offers both economic and environmental advantages. In this study, the recovery of XOS by the combined use of activated carbon adsorption, water washing and ethanol desorption from diluted acid pretreated energy cane bagasse hydrolysates was evaluated. The recovered XOS was tested for its prebiotic activity on Bifidobacterium adolescentis ATCC 15703. The final product of extracted XOS from energy cane bagasse (XOS EC Bagasse crude sample) had a purity of 93%, which was comparable to the purities observed with two commercially available XOS prebiotics, CPA (89%) and CPB (93%). XOS EC Bagasse crude sample exhibited prebiotic properties by stimulating the growth of B. adolescentis ATCC 15703 and by producing lactic acid, which were comparable to those observed with the commercial prebiotics.


Crop Science ◽  
1990 ◽  
Vol 30 (3) ◽  
pp. 561-565 ◽  
Author(s):  
S. E. Smith ◽  
D. M. Conta ◽  
U. Bechert

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


Author(s):  
Aissata Ousmane Kane ◽  
Vanessa O. Arnoldi Pellergini ◽  
Melissa C. Espirito Santo ◽  
Balla Diop Ngom ◽  
José M. García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document