scholarly journals Integrated weed management with reduced herbicides in a no‐till dairy rotation

2021 ◽  
Author(s):  
Haleigh Summers ◽  
Heather D. Karsten ◽  
William Curran ◽  
Glenna M. Malcolm
1999 ◽  
Vol 9 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Ronald D. Morse

Advantages of no-till (NT) production systems are acknowledged throughout the world. During the 1990s, production of NT vegetable crops has increased for both direct seeded and transplanted crops. Increased interest in reduced-tillage systems among research workers and vegetable growers is attributed to: 1) development and commercialization of NT transplanters and seeders, 2) advancements in the technology and practice of producing and managing high-residue cover crop mulches, and 3) improvements and acceptance of integrated weed management techniques. Results from research experiments and grower's fields over the years has shown that success with NT transplanted crops is highly dependent on achieving key production objectives, including: 1) production of dense, uniformly distributed cover crops; 2) skillful management of cover crops before transplanting, leaving a heavy, uniformly distributed killed mulch cover over the soil surface; 3) establishment of transplants into cover crops with minimum disturbance of surface residues and surface soil; and 4) adoption of year-round weed control strategies.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 764-772 ◽  
Author(s):  
Joel Torra ◽  
Aritz Royo-Esnal ◽  
Jordi Rey-Caballero ◽  
Jordi Recasens ◽  
Marisa Salas

AbstractCorn poppy (Papaver rhoeasL.) is the most widespread broadleaf weed species infesting winter cereals in Europe. Biotypes that are resistant to both 2,4-D and tribenuron-methyl, an acetolactate synthase (ALS) inhibitor, have evolved in recent decades, thus narrowing the options for effective chemical control. Though the effectiveness of several integrated weed management (IWM) strategies have been confirmed, none of these strategies have been tested to manage multiple herbicide–resistantP. rhoeasunder no-till planting. With the expansion of no-till systems, it is important to prove the effectiveness of such strategies. In this study, a field experiment over three consecutive seasons was conducted to evaluate and compare the effects of different weed management strategies, under either direct drilling (i.e., no-till) or intensive tillage, on a multiple herbicide–resistantP. rhoeaspopulation. Moreover, evaluations were carried out as to whether the proportions of ALS inhibitor–resistant individuals were affected by the tillage systems for each IWM strategy at the end of the 3-yr period. The IWM strategies tested in this research included crop rotation, delayed sowing, and different herbicide programs such as PRE plus POST or POST. All IWM strategies greatly reduced the initial density ofP. rhoeaseach season (≥ 95%) under either direct drilling or intensive tillage. After 3 yr, the IWM strategies were very effective in both tillage systems, though the effects were stronger under direct drilling (~95%) compared with intensive tillage (~86%). At the end of the study, the proportion of ALS inhibitor–resistant plants was not different between the IWM strategies in both tillage systems (94% on average). Therefore, crop rotation (with sunflower [Helianthus annuusL.]), delayed sowing, or a variation in the herbicide application timing are effective under direct drilling to manage herbicide-resistantP. rhoeas. Adoption of IWM strategies is necessary to mitigate the evolution of resistance in both conventional and no-till systems.


2017 ◽  
Vol 12 (16) ◽  
pp. 1404-1410
Author(s):  
Tanji Abbès ◽  
El Gharras Oussama ◽  
Mayfield Allan ◽  
El Mourid Mohamed

2020 ◽  
Vol 34 (4) ◽  
pp. 613-618
Author(s):  
Jessica Quinn ◽  
Nader Soltani ◽  
Jamshid Ashigh ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractPreplant (PP) herbicide applications are an important tool within an integrated weed management system, specifically in no-till production. An understanding of crop tolerance regarding PP applications is important for effectively integrating a new herbicide into no-till cropping systems. Twelve field trials (six in corn and six in soybean) were conducted over a 2-yr period (2018 and 2019) near Exeter and Ridgetown, ON. The purpose of these studies was to evaluate the tolerance of soybean and corn to halauxifen-methyl applied PP, PRE, or POST at the registered rate (5 g a.i. ha−1) and twice the registered rate (10 g a.i. ha−1), hereafter referred to as the 1× and 2× rate, respectively. All trials were kept weed-free throughout the growing season to remove the confounding effect of weed interference. Halauxifen-methyl applied 14 d preplant (DPP), 7 DPP, 1 DPP, and 5 d after seeding (DAS) at the 1× and 2× rates caused ≤10% visible soybean injury. In contrast, halauxifen-methyl applied POST (cotyledon–unifoliate stage, VE-VC) caused 67% to 87% visible soybean injury, a 50% to 53% reduction in height, 65% to 81% decrease in population, 56% to 67% lower biomass, and 53% to 63% decline in yield. Halauxifen-methyl applied 10 DPP, 5 DPP, 1 DPP, 5 DAS, and POST (spike–one leaf stage, VE-V1) at the 1× and 2× rate caused ≤3% visible corn injury and caused no effect on corn height or biomass. Halauxifen-methyl applied at VE-V1 at the 2× rate reduced corn yield 10%. Based on these studies, the current application restriction of 7 DPP in soybean and 5 DPP in corn is conservative and could be expanded. Expanding the application window of halauxifen-methyl would increase the utility of this herbicide for producers.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 433
Author(s):  
Jordi Recasens ◽  
Aritz Royo-Esnal ◽  
Francisco Valencia-Gredilla ◽  
Joel Torra

The present work examines the effects of different integrated weed management (IWM) programs on multiple herbicide-resistant Papaver rhoeas populations in terms of effectiveness, profitability and carbon footprint. With this aim a trial was established in a winter cereal field under no-till in North-Eastern Spain during three consecutive seasons. Four IWM programs with different intensification levels, from less (crop rotation, mechanical control, and no herbicides) to more intense (wheat monoculture with high chemical inputs), were established. The different strategies integrated in the four programs were efficient in managing the weed after three years, with increased effectiveness after management program intensification. Whereas low input program (which includes fallow season) represented less economic cost than the other programs, on average, no differences were observed on carbon foot print, considered as kg CO2eq kg−1 product, between the different programs, except in the crop rotation program due to the low pea yield obtained. The results from this study show that in the search for a balance between crop profitability and reduction of the carbon footprint while controlling an herbicide resistant population is challenging, and particularly under no-till. In this scenario the short term priority should be to reduce the presence of multiple herbicide resistant biotypes integrating the different available chemical, cultural, and physical strategies.


Author(s):  
Zlatko SVEČNJAK ◽  
Klara BARIĆ ◽  
Dubravko MAĆEŠIĆ ◽  
Boris DURALIJA ◽  
Jerko GUNJAČA

Concern about the effects of herbicides on the environment is the main stimulus to reduce their use in maize (Zea mays L.). Field research was conducted over two years to evaluate the efficacy of integrated weed management combining two seedbed practices at planting (no-till vs. tilled seedbeds), mechanical (0-3 inter-row cultivations) and chemical (none, band- and broadcast applied herbicide) methods on maize grain yield. Although seedbed practice had no effect on crop emergence, tilled seedbeds tended to produce larger grain yield than no-till seedbeds because of better control of early germinating weeds. Consequently, grain yield in no-till seedbeds consistently increased with each cultivation up to three passes because of improved weed control. However, the largest yield in tilled seedbeds occurred with two cultivations and then slightly decreased following third cultivation pass. Band herbicide application (50 % reduction in herbicide use compared to broadcast application) resulted in higher yield than one cultivation alone, whereas opposite responses occurred after multiple cultivation passes. Grain yield responded positively to one and two cultivation passes even when weeds were controlled by pre-emergence chemical method. Our findings indicated that banded herbicide application provided effective weed control in maize crop when complemented with two inter-row cultivations regardless of the method of seedbed preparation; thus making a viable option for Croatian farmers to lower herbicide load on the environment.


2001 ◽  
Vol 81 (4) ◽  
pp. 877-880 ◽  
Author(s):  
Kevin Chandler, Anil Shrestha, and Swanton

Seed return from later-emerging weeds is a concern in soybean management systems based on critical periods for weed control. This study in Ontario estimated the weed seed return to the soil surface as influenced by the duration of weed control in soybean and soybean row spacing. Weeds emerging after the 1- to 2-trifoliate stage of soybean development did not increase the weed seedbank population compared to the residual population in the weed-free control. Weed seed return was greater in 76 cm than in 38 cm or 19 cm (twin rows) soybean row spacings. Key words: Seedbank, weed population dynamics, integrated weed management, glyphosate-resistant soybean, [Glycine max (L.) Merr].


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 712-726 ◽  
Author(s):  
Elina M. Snyder ◽  
William S. Curran ◽  
Heather D. Karsten ◽  
Glenna M. Malcolm ◽  
Sjoerd W. Duiker ◽  
...  

The objective of this study was to evaluate weed control, crop yields, potential soil loss, and net returns to management of an integrated weed management system in no-till corn and soybean compared to an herbicide-based strategy. The integrated weed management system reduced herbicide inputs by delayed cover crop termination, herbicide banding, and high-residue cultivation (reduced herbicide [RH]), while the other system used continuous no-tillage and herbicides to control weeds (standard herbicide [SH]). Research was conducted within the Penn State Sustainable Dairy Cropping Systems Experiment, where corn and soybean are each planted once in a 6-yr crop rotation. In this 3-yr study, weed density and biomass were often greater under RH management, but weed biomass never exceeded 19 g m–2in corn and 21 g m–2in soybean. Corn yield and population did not differ in any year, and net returns to management were $33.65 ha–1higher in RH corn due to lower herbicide costs and slightly, though not significantly, higher yields. Soybean yield was lower in RH compared to SH in 2 of 3 yr, and was correlated with soybean population and cover crop residue. Net financial returns were $43.69 ha–1higher in SH soybean compared to RH. Predicted soil loss never exceeded T (maximum allowable soil loss) for any treatment and slope combination, though soil loss was 100% greater on a 10% slope under RH management (vs. SH) due to cultivation.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262288
Author(s):  
Bhagirath Singh Chauhan ◽  
Sudheesh Manalil

Summer grass weed species are a particular problem in the northeast cropping region of Australia because they are prolific seeders and favor no-till systems. Information on weed seed persistence levels can be used for the development of effective and sustainable integrated weed management programs. A field study was conducted over 42 months to evaluate the seedbank persistence of Chloris truncata, C. virgata, Dactyloctenium radulans, and Urochloa panicoides as affected by burial depth (0, 2, and 10 cm). Regardless of species, buried seeds persisted longer than surface seeds and there was no difference in seed persistence between 2 and 10 cm depths. Surface seeds of C. truncata depleted completely in 12 months and buried seeds in 24 months. Similarly, C. virgata seeds placed on the soil surface depleted in 12 months. Buried seeds of this species took 18 months to completely deplete, suggesting that C. truncata seeds persist longer than C. virgata seeds. Surface seeds of D. radulans took 36 months to completely deplete, whereas about 7% of buried seeds were still viable at 42 months. U. panicoides took 24 and 42 months to completely exhaust the surface and buried seeds, respectively. These results suggest that leaving seeds on the soil surface will result in a more rapid depletion of the seedbank. Information on seed persistence will help to manage these weeds using strategic tillage operations.


2016 ◽  
Vol 30 (4) ◽  
pp. 22
Author(s):  
Abhinandan Singh ◽  
Pankaj Kumar Ojha

Sign in / Sign up

Export Citation Format

Share Document