scholarly journals Drying mechanism of monodisperse colloidal film: Evolution of normal stress and its correlation with microstructure

AIChE Journal ◽  
2021 ◽  
Author(s):  
Jae Hwan Jeong ◽  
Young Ki Lee ◽  
Kyung Hyun Ahn
Keyword(s):  
Soft Matter ◽  
2017 ◽  
Vol 13 (44) ◽  
pp. 8156-8170 ◽  
Author(s):  
Mu Wang ◽  
John F. Brady

Brownian dynamics simulations and continuum models reveal the rich structural and mechanical features of the colloidal film drying processes with constant velocity and constant normal stress interface movements.


Author(s):  
JAE HWAN JEONG ◽  
Young Ki Lee ◽  
Kyung Ahn

We investigate the drying process of monodisperse colloidal film over a wide range of Péclet number (Pe) by using the Brownian dynamics simulation. We analyze the detailed process in three aspects; accumulation front, normal stress, and microstructure. The evolution of particle distribution is quantified by tracking the accumulation front. The accumulated particles contribute to the continuous increase of the normal stress at the interface. At the substrate, the normal stress first stays constant and then increases as the accumulation front touches the substrate. We quantitatively analyze the stress development by a scaled normal stress difference between the two boundaries. At all tested Pe, the stress difference increases to the maximum, followed by a decrease during drying. Interestingly, a mismatch is observed between the stress difference maximum and the initial stress increase at the substrate. The microstructural analysis reveals that this mismatch is related to the microstructural development at the substrate.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 496-504
Author(s):  
M. R. Eslami ◽  
M. Shakeri ◽  
A. R. Ohadi ◽  
B. Shiari

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Angelo Pommella ◽  
Luca Cipelletti ◽  
Laurence Ramos
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinlong Huang ◽  
Chenyangtao Lv ◽  
Haijian Chu

AbstractBubble pressure and elastic response in helium-irradiated tungsten are systematically investigated in this study. An anomalous shape effect is found that the radial normal stress and mean stress distributions around a nanosized void or bubble are far from the spherical symmetry, which is ascribed to polyhedral geometry characteristic of the nanosized bubble and physical mechanism transition from crystal surfaces dominated to the surface ledges and triple junctions dominated. Molecular simulation shows that Young–Laplace equation is not suitable for directly predicting equilibrium pressure for nanosized bubble in crystals. Consequently, a new criterion of average radial normal stress of spherical shell is proposed to polish the concept of equilibrium pressure of helium bubbles. Moreover, the dependences of bubble size, temperature and helium/vacancy ratio (He/Vac ratio) on the bubble pressure are all documented, which may provide an insight into the understanding of mechanical properties of helium-irradiated tungsten.


Author(s):  
Ibrahim Awad ◽  
Leila Ladani

Due to their superior mechanical and electrical properties, multiwalled carbon nanotubes (MWCNTs) have the potential to be used in many nano-/micro-electronic applications, e.g., through silicon vias (TSVs), interconnects, transistors, etc. In particular, use of MWCNT bundles inside annular cylinders of copper (Cu) as TSV is proposed in this study. However, the significant difference in scale makes it difficult to evaluate the interfacial mechanical integrity. Cohesive zone models (CZM) are typically used at large scale to determine the mechanical adherence at the interface. However, at molecular level, no routine technique is available. Molecular dynamic (MD) simulations is used to determine the stresses that are required to separate MWCNTs from a copper slab and generate normal stress–displacement curves for CZM. Only van der Waals (vdW) interaction is considered for MWCNT/Cu interface. A displacement controlled loading was applied in a direction perpendicular to MWCNT's axis in different cases with different number of walls and at different temperatures and CZM is obtained for each case. Furthermore, their effect on the CZM key parameters (normal cohesive strength (σmax) and the corresponding displacement (δn) has been studied. By increasing the number of the walls of the MWCNT, σmax was found to nonlinearly decrease. Displacement at maximum stress, δn, showed a nonlinear decrease as well with increasing the number of walls. Temperature effect on the stress–displacement curves was studied. When temperature was increased beyond 1 K, no relationship was found between the maximum normal stress and temperature. Likewise, the displacement at maximum load did not show any dependency to temperature.


Sign in / Sign up

Export Citation Format

Share Document