scholarly journals Centrifugation-free washing: A novel approach for removing immunoglobulin A from stored red blood cells

2018 ◽  
Vol 93 (4) ◽  
pp. 518-526 ◽  
Author(s):  
Eszter Vörös ◽  
Nathaniel Z. Piety ◽  
Briony C. Strachan ◽  
Madeleine Lu ◽  
Sergey S. Shevkoplyas
Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fatih Veysel Nurçin ◽  
Elbrus Imanov

Manual counting and evaluation of red blood cells with the presence of malaria parasites is a tiresome, time-consuming process that can be altered by environmental conditions and human error. Many algorithms were presented to segment red blood cells for subsequent parasitemia evaluation by machine learning algorithms. However, the segmentation of overlapping red blood cells always has been a challenge. Marker-controlled watershed segmentation is one of the methods that was implemented to separate overlapping red blood cells. However, a high number of overlapped red blood cells were still an issue. We propose a novel approach to improve the segmentation efficiency of marker-controlled watershed segmentation. Local minimum histogram background segmentation with a selective hole filling algorithm was introduced to improve segmentation efficiency of marker-controlled watershed segmentation on a high number of overlapping red blood cells. The local minimum was selected on the smoothed histogram for background segmentation. The combination of selective filling, convex hull, and Hough circle detection algorithms was utilized for the intact segmentation of red blood cells. The markers were computed from the resulted mask, and finally, marker-controlled watershed segmentation was applied to separate overlapping red blood cells. As a result, the proposed algorithm achieved higher background segmentation accuracy compared to popular background segmentation algorithms, and the inclusion of corner details improved watershed segmentation efficiency.


2009 ◽  
Vol 29 (8) ◽  
pp. 1463-1474 ◽  
Author(s):  
William M Armstead ◽  
Kumkum Ganguly ◽  
John W Kiessling ◽  
Xiao-Han Chen ◽  
Douglas H Smith ◽  
...  

Babies experience hypoxia (H) and ischemia (I) from stroke. The only approved treatment for stroke is fibrinolytic therapy with tissue-type plasminogen activator (tPA). However, tPA potentiates H/I-induced impairment of responses to cerebrovasodilators such as hypercapnia and hypotension, and blockade of tPA-mediated vasoactivity prevents this deleterious effect. Coupling of tPA to red blood cells (RBCs) reduces its central nervous system (CNS) toxicity through spatially confining the drug to the vasculature. Mitogen-activated protein kinase (MAPK), a family of at least three kinases, is upregulated after H/I. In this study we determined whether RBC-tPA given before or after cerebral H/I would preserve responses to cerebrovasodilators and prevent neuronal injury mediated through the extracellular signal-related kinase (ERK) MAPK pathway. Animals given RBC-tPA maintained responses to cerebrovasodilators at levels equivalent to pre-H/I values. cerebrospinal fluid and brain parenchymal ERK MAPK was elevated by H/I and this upregulation was potentiated by tPA, but blunted by RBC-tPA. U0126, an ERK MAPK antagonist, also maintained cerebrovasodilation post H/I. Neuronal degeneration in CA1 hippocampus after H/I was not improved by tPA, but was ameliorated by RBC-tPA and U0126. These data suggest that coupling of tPA to RBCs offers a novel approach toward increasing the benefit/risk ratio of thrombolytic therapy for CNS disorders associated with H/I.


2019 ◽  
Vol 4 (2) ◽  
pp. 17-22 ◽  
Author(s):  
Jameela Ali Alkrimi ◽  
Sherna Aziz Tome ◽  
Loay E. George

Principal component analysis (PCA) is based feature reduction that reduces the correlation of features. In this research, a novel approach is proposed by applying the PCA technique on various morphologies of red blood cells (RBCs). According to hematologists, this method successfully classified 40 different types of abnormal RBCs. The classification of RBCs into various distinct subtypes using three machine learning algorithms is important in clinical and laboratory tests for detecting blood diseases. The most common abnormal RBCs are considered as anemic. The RBC features are sufficient to identify the type of anemia and the disease that caused it. Therefore, we found that several features extracted from RBCs in the blood smear images are not significant for classification when observed independently but are significant when combined with other features. The number of feature vectors is reduced from 271 to 8 as time resuming in training and accuracy percentage increased to 98%.


Vaccine ◽  
2010 ◽  
Vol 28 (17) ◽  
pp. 2965-2972 ◽  
Author(s):  
Alice Banz ◽  
Magali Cremel ◽  
Audrey Rembert ◽  
Yann Godfrin

Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Sign in / Sign up

Export Citation Format

Share Document