scholarly journals Regulation of intracellular innate immune amyloid beta (aβ) clearance

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Marianne Wettergreen ◽  
Berglind Gisladottir ◽  
Bjørn Eivind Kirsebom ◽  
Erik Christensen ◽  
Kulbhushan Sharma ◽  
...  
2021 ◽  
Vol 13 ◽  
Author(s):  
Dongmei Wu ◽  
Yang Hu ◽  
Min Song ◽  
Gongbo Li

Abnormal amyloid beta (Aβ) clearance is a distinctive pathological mechanism for Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), which mediates the lipidation of apolipoprotein E, plays a critical role in Aβ clearance. As an environmental factor for AD, dichlorodiphenyltrichloroethane (DDT) can decrease ATP-binding cassette transporter A1 (ABCA1) expression and disrupt Aβ clearance. Liver X receptor α (LXRα) is an autoregulatory transcription factor for ABCA1 and a target of some environmental pollutants, such as organophosphate pesticides. In this study, we aimed to investigate whether DDT could affect Aβ clearance by targeting LXRα. The DDT-pretreated H4 human neuroglioma cells and immortalized astrocytes were incubated with exogenous Aβ to evaluate Aβ consumption. Meanwhile, cytotoxicity and LXRα expression were determined in the DDT-treated cells. Subsequently, the antagonism of DDT on LXRα agonist T0901317 was determined in vitro. The interaction between DDT and LXRα was predicted by molecular docking and molecular dynamics simulation technology. We observed that DDT could inhibit Aβ clearance and decrease the levels of LXRα mRNA and LXRα protein. Moreover, DDT is supposed to strongly bind to LXRα and exert antagonistic effects on LXRα. In conclusion, this study firstly presented that DDT could inhibit LXRα expression, which would contribute to Aβ clearance decline in vitro. It provides an experimental basis to search for potential therapeutic targets of AD.


2020 ◽  
Vol 21 (5) ◽  
pp. 1652 ◽  
Author(s):  
Robert P. Friedland ◽  
Joseph D. McMillan ◽  
Zimple Kurlawala

Despite the enormous literature documenting the importance of amyloid beta (Ab) protein in Alzheimer's disease, we do not know how Ab aggregation is initiated and why it has its unique distribution in the brain. In vivo and in vitro evidence has been developed to suggest that functional microbial amyloid proteins produced in the gut may cross-seed Ab aggregation and prime the innate immune system to have an enhanced and pathogenic response to neuronal amyloids. In this commentary, we summarize the molecular mechanisms by which the microbiota may initiate and sustain the pathogenic processes of neurodegeneration in aging.


2020 ◽  
Vol 21 (18) ◽  
pp. 6813
Author(s):  
Ana C. Duarte ◽  
André Furtado ◽  
Mariya V. Hrynchak ◽  
Ana R. Costa ◽  
Daniela Talhada ◽  
...  

Accumulation of amyloid-beta (Aβ) in the brain is thought to derive from the impairment of Aβ clearance mechanisms rather than from its overproduction, which consequently contributes to the development of Alzheimer’s disease. The choroid plexus epithelial cells constitute an important clearance route for Aβ, either by facilitating its transport from the cerebrospinal fluid to the blood, or by synthesizing and secreting various proteins involved in Aβ degradation. Impaired choroid plexus synthesis, secretion, and transport of these Aβ-metabolizing enzymes have been therefore associated with the disruption of Aβ homeostasis and amyloid load. Factors such as aging, female gender, and circadian rhythm disturbances are related to the decline of choroid plexus functions that may be involved in the modulation of Aβ-clearance mechanisms. In this study, we investigated the impact of age, sex hormones, and circadian rhythm on the expression of Aβ scavengers such as apolipoprotein J, gelsolin, and transthyretin at the rat choroid plexus. Our results demonstrated that mRNA expression and both intracellular and secreted protein levels of the studied Aβ scavengers are age-, sex-, and circadian-dependent. These data suggest that the Aβ-degradation and clearance pathways at the choroid plexus, mediated by the presence of Aβ scavengers, might be compromised as a consequence of aging and circadian disturbances. These are important findings that enhance the understanding of Aβ-clearance-regulating mechanisms at the blood–cerebrospinal fluid barrier.


Author(s):  
Ruth Kandel ◽  
Mitchell R. White ◽  
I-Ni Hseih ◽  
Kevan L. Hartshorn
Keyword(s):  

Author(s):  
Daniel L. Kober ◽  
Melissa D. Stuchell-Brereton ◽  
Colin E. Kluender ◽  
Hunter B. Dean ◽  
Michael R. Strickland ◽  
...  

AbstractINTRODUCTIONTREM2 is an innate immune receptor expressed on myeloid cells including microglia in the brain. How TREM2 engages different ligands remains poorly understood.METHODSWe used comprehensive BLI analysis to investigate the TREM2 interactions with ApoE and monomeric amyloid beta (mAβ42).RESULTSTREM2 binding did not depend on ApoE lipidation, and there were only slight differences in affinity observed between ApoE isoforms (E4 > E3 > E2). Surprisingly, disease-linked TREM2 variants within a “basic patch” minimally impact ApoE binding. Instead, TREM2 has a unique hydrophobic surface that can bind to ApoE. This direct engagement requires the hinge region of ApoE. TREM2 directly binds mAβ42 and can potently inhibit Aβ42 polymerization, suggesting a potential mechanism for soluble TREM2 (sTREM2) in preventing AD pathogenesis.DISCUSSIONThese findings demonstrate that TREM2 has at least two separate surfaces to engage ligands and uncovers a potential function for sTREM2 in directly inhibiting Aβ polymerization.


Sign in / Sign up

Export Citation Format

Share Document