ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury

2016 ◽  
Vol 80 (1) ◽  
pp. 112-126 ◽  
Author(s):  
J. Michael Hendry ◽  
M. Cecilia Alvarez-Veronesi ◽  
Eva Placheta ◽  
Jennifer J. Zhang ◽  
Tessa Gordon ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Shixian Dong ◽  
Sijia Feng ◽  
Yuzhou Chen ◽  
Mo Chen ◽  
Yimeng Yang ◽  
...  

Peripheral nerve injury gives rise to devastating conditions including neural dysfunction, unbearable pain and even paralysis. The therapeutic effect of current treatment for peripheral nerve injury is unsatisfactory, resulting in slow nerve regeneration and incomplete recovery of neural function. In this study, nerve suture combined with ADSCs injection was adopted in rat model of sciatic nerve injury. Under real-time visualization of the injected cells with the guidance of NIR-II fluorescence imaging in vivo, a spatio-temporal map displaying cell migration from the proximal injection site (0 day post-injection) of the nerve to the sutured site (7 days post-injection), and then to the distal section (14 days post-injection) was demonstrated. Furthermore, the results of electromyography and mechanical pain threshold indicated nerve regeneration and functional recovery after the combined therapy. Therefore, in the current study, the observed ADSCs migration in vivo, electrophysiological examination results and pathological changes all provided robust evidence for the efficacy of the applied treatment. Our approach of nerve suture combined with ADSCs injection in treating peripheral nerve injury under real-time NIR-II imaging monitoring in vivo added novel insights into the treatment for peripheral nerve injury, thus further enhancing in-depth understanding of peripheral nerve regeneration and the mechanism behind.


2021 ◽  
Author(s):  
Songyang Liu ◽  
Yijun Liu ◽  
Liping Zhou ◽  
Ci Li ◽  
Meng Zhang ◽  
...  

Peripheral nerve injury (PNI) remains an unresolved challenge in the medicine area. With the development of biomaterial science and tissue engineering, a variety of nerve conduits were widely applied in...


2022 ◽  
Vol 15 ◽  
Author(s):  
Jenica Acheta ◽  
Shannon B. Z. Stephens ◽  
Sophie Belin ◽  
Yannick Poitelon

Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.


2012 ◽  
Vol 116 (2) ◽  
pp. 432-444 ◽  
Author(s):  
Meei-Ling Sheu ◽  
Fu-Chou Cheng ◽  
Hong-Lin Su ◽  
Ying-Ju Chen ◽  
Chun-Jung Chen ◽  
...  

Object Increased integration of CD34+ cells in injured nerve significantly promotes nerve regeneration, but this effect can be counteracted by limited migration and short survival of CD34+ cells. SDF-1α and its receptor mediate the recruitment of CD34+ cells involved in the repair mechanism of several neurological diseases. In this study, the authors investigate the potentiation of CD34+ cell recruitment triggered by SDF-1α and the involvement of CD34+ cells in peripheral nerve regeneration. Methods Peripheral nerve injury was induced in 147 Sprague-Dawley rats by crushing the left sciatic nerve with a vessel clamp. The animals were allocated to 3 groups: Group 1, crush injury (controls); Group 2, crush injury and local application of SDF-1α recombinant proteins; and Group 3, crush injury and local application of SDF-1α antibody. Electrophysiological studies and assessment of regeneration markers were conducted at 4 weeks after injury; neurobehavioral studies were conducted at 1, 2, 3, and 4 weeks after injury. The expression of SDF-1α, accumulation of CD34+ cells, immune cells, and angiogenesis factors in injured nerves were evaluated at 1, 3, 7, 10, 14, 21, and 28 days after injury. Results Application of SDF-1α increased the migration of CD34+ cells in vitro, and this effect was dose dependent. Crush injury induced the expression of SDF-1α, with a peak of 10–14 days postinjury, and this increased expression of SDF-1α paralleled the deposition of CD34+ cells, expression of VEGF, and expression of neurofilament. These effects were further enhanced by the administration of SDF-1α recombinant protein and abolished by administration of SDF-1α antibody. Furthermore, these effects were consistent with improvement in measures of neurological function such as sciatic function index, electrophysiological parameters, muscle weight, and myelination of regenerative nerve. Conclusions Expression of SDF-1α facilitates recruitment of CD34+ cells in peripheral nerve injury. The increased deposition of CD34+ cells paralleled significant expression of angiogenesis factors and was consistent with improvement of neurological function. Utilization of SDF-1α for enhancing the recruitment of CD34+ cells involved in peripheral nerve regeneration may be considered as an alternative treatment strategy in peripheral nerve disorders.


2009 ◽  
Vol 37 (01) ◽  
pp. 57-67 ◽  
Author(s):  
Shao-Yin Wei ◽  
Pei-Xun Zhang ◽  
Na Han ◽  
Yu Dang ◽  
Hong-Bo Zhang ◽  
...  

It has been demonstrated that aqueous extract of Radix Hedysari Prescription and modified Radix Hedysari Prescription could improve the regeneration of injured peripheral nerve. Radix Hedysari is a main component in these two formulas. We hypothesized that Hedysari polysaccharides (HPS), a main active ingredient, could also enhance peripheral nerve regeneration after nerve injury in adult animals. In the present study, we examined the effects of HPS on sciatic nerve regeneration for 6 weeks following clamping in rats (administrated orally of 2 ml HPS liquid daily, 0.25 g/ml). The results showed that HPS was able to enhance sciatic function index (SFI) value, tibial function index (TFI) value, peroneal nerve function index (PFI) value, conduction velocity, and the number of regenerated myelinated nerve fibers, suggesting the potential clinical application of HPS for the treatment of peripheral nerve injury in humans.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2194
Author(s):  
Yoon-Yen Yow ◽  
Tiong-Keat Goh ◽  
Ke-Ying Nyiew ◽  
Lee-Wei Lim ◽  
Siew-Moi Phang ◽  
...  

Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.


Author(s):  
Zhiwen Yan ◽  
Cheng Chen ◽  
Gonzalo Rosso ◽  
Yun Qian ◽  
Cunyi Fan

Peripheral nerve tissues possess the ability to regenerate within artificial nerve scaffolds, however, despite the advance of biomaterials that support nerve regeneration, the functional nerve recovery remains unsatisfactory. Importantly, the incorporation of two-dimensional nanomaterials has shown to significantly improve the therapeutic effect of conventional nerve scaffolds. In this review, we examine whether two-dimensional nanomaterials facilitate angiogenesis and thereby promote peripheral nerve regeneration. First, we summarize the major events occurring after peripheral nerve injury. Second, we discuss that the application of two-dimensional nanomaterials for peripheral nerve regeneration strategies by facilitating the formation of new vessels. Then, we analyze the mechanism that the newly-formed capillaries directionally and metabolically support neuronal regeneration. Finally, we prospect that the two-dimensional nanomaterials should be a potential solution to long range peripheral nerve defect. To further enhance the therapeutic effects of two-dimensional nanomaterial, strategies which help remedy the energy deficiency after peripheral nerve injury could be a viable solution.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Rao ◽  
Dianying Zhang ◽  
Tengjiaozi Fang ◽  
Changfeng Lu ◽  
Bo Wang ◽  
...  

At present, repair methods for peripheral nerve injury often fail to get satisfactory result. Although various strategies have been adopted to investigate the microenvironment after peripheral nerve injury, the underlying molecular mechanisms of neurite outgrowth remain unclear. In this study, we evaluate the effects of exosomes from gingival mesenchymal stem cells (GMSCs) combined with biodegradable chitin conduits on peripheral nerve regeneration. GMSCs were isolated from human gingival tissue and characterized by surface antigen analysis and in vitro multipotent differentiation. The cell supernatant was collected to isolate the exosomes. The exosomes were characterized by transmission electron microscopy, Western blot, and size distribution analysis. The effects of exosomes on peripheral nerve regeneration in vitro were evaluated by coculture with Schwann cells and DRGs. The chitin conduit was prepared and combined with the exosomes to repair rat sciatic nerve defect. Histology, electrophysiology, and gait analysis were used to test the effects of exosomes on sciatic nerve function recovery in vivo. We have successfully cultured GMSCs and isolated exosomes. The exosomes from GMSCs could significantly promote Schwann cell proliferation and DRG axon growth. The in vivo studies showed that chitin conduit combined with exosomes from GMSCs could significantly increase the number and diameter of nerve fibers and promote myelin formation. In addition, muscle function, nerve conduction function, and motor function were also obviously recovered. In summary, this study suggests that GMSC-derived exosomes combined with biodegradable chitin conduits are a useful and novel therapeutic intervention in peripheral nerve repair.


2021 ◽  
Vol 6 (1) ◽  
pp. 21-25
Author(s):  
Davis B. Rippee ◽  
Gabriella E. Glassman ◽  
Sara C. Chaker ◽  
Patrick E. Assi ◽  
Jennifer Black ◽  
...  

Introduction: Peripheral nerve injuries commonly result from trauma and can lead to devastating loss of sensory and motor function. A novel strategy to improve peripheral nerve regeneration is a chemical fusogen known as polyethylene glycol (PEG). Several animal studies have illustrated PEG’s potential to help prevent axon loss after peripheral nerve injury. However, the relative rate of success and potential complications of these studies have not been definitively shown in the literature. The purpose of this systematic review is to evaluate the literature regarding the success of PEG adjunct treatment after peripheral nerve injury in preclinical models. Materials and Methods: The MEDLINE database was queried using the PubMed search engine with the following keywords and phrases: “polyethylene glycol” OR “PEG” AND “nerve” AND “fusion”. All resulting articles were screened by two reviewers. Animal type, nerve type, injury type, type(s) of analyses, and overall superiority of outcomes were assessed. Results: One-hundred and seventy-nine articles were identified, and thirteen studies remained after the application of inclusion and exclusion criteria. Twelve of the thirteen studies utilized rats as the preclinical model, while one utilized a guinea pig. Superiority of peripheral nerve repair outcomes with adjunct PEG treatment compared to a control group was reported in eleven of thirteen studies. Conclusions: The majority of studies reported positive outcomes when using PEG; this indicates that PEG treatment has the potential to enhance peripheral nerve regeneration after injury. However, the results of some of these studies indicated several uncertainties that need to be addressed in future studies. These preclinical models may help guide clinicians regarding the use of PEG treatment in peripheral nerve repair.


2021 ◽  
Vol 10 (17) ◽  
pp. e230101724942
Author(s):  
Enilton de Santana Ribeiro de Mattos ◽  
Alex Guedes ◽  
Mateus dos Santos Viana ◽  
Abrahão Fontes Baptista

This is a protocol for a systematic review (intervention). Electrical stimulation (ES) is a therapeutic strategy used to improve peripheral nerve regeneration that involves the application of electrical fields of constant or varying frequency. We are going to lead a literature search to identify all published and unpublished randomized controlled trials that describe the use of ES in patients with peripheral nerve injury. We will compare: Electrical stimulation (application of electrical fields of constant or varying frequency) versus sham in patients with peripheral nerve injury; Electrical stimulation versus standard treatment (physiotherapy) in patients with peripheral nerve injury; Electrical stimulation versus no treatment in patients with peripheral nerve injury. Considering the scenario of very numerous strategies and different techniques of ES to stimulate nerve regeneration, decisions to recommend them should consider these uncertainties and should be summarized intended its application in clinical practice. The objective of this review is to assess the influence of electrical stimulation (ES) on nerve regeneration in individuals with peripheral nerve injury.


Sign in / Sign up

Export Citation Format

Share Document