Effect of the continuous medium on the color of discontinuous substrates. IV. The effect of the refractive index of the continuous medium

1973 ◽  
Vol 17 (3) ◽  
pp. 873-884 ◽  
Author(s):  
E. Hope Allen ◽  
D. L. Faulkner ◽  
G. Goldfinger ◽  
R. McGregor
Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1479-1489 ◽  
Author(s):  
Mehmet Günay ◽  
You-Lin Chuang ◽  
Mehmet Emre Tasgin

AbstractA recent study [PRB 100, 075427 (2019)], finally, demonstrated the plasmon-analog of refractive index enhancement in metal nanostructures (MNSs), which has already been studied in atomic clouds for several decades. Here, we simply utilize this phenomenon for achieving continuously-tunable enhanced Cherenkov radiation (CR) in MNSs. Beyond enabling CR from slow-moving particles, or increasing its intensity, the phenomenon can be used in continuous-tuning of the velocity cutoff of particles contributing to CR. More influentially, this allows a continuously-tunable analysis of the contributing particles as if the data is collected from many different detectors, which enables data correction. The phenomenon can also be integrated into lattice MNSs, for continuous medium tuning, where a high density of photonic states is present and the threshold for the CR can even be lifted. Additionally, vanishing absorption can heal radiation angle distortion effects caused by the metallic absorption.


Author(s):  
W. E. Lee

An optical waveguide consists of a several-micron wide channel with a slightly different index of refraction than the host substrate; light can be trapped in the channel by total internal reflection.Optical waveguides can be formed from single-crystal LiNbO3 using the proton exhange technique. In this technique, polished specimens are masked with polycrystal1ine chromium in such a way as to leave 3-13 μm wide channels. These are held in benzoic acid at 249°C for 5 minutes allowing protons to exchange for lithium ions within the channels causing an increase in the refractive index of the channel and creating the waveguide. Unfortunately, optical measurements often reveal a loss in waveguiding ability up to several weeks after exchange.


Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


1992 ◽  
Vol 139 (2) ◽  
pp. 163 ◽  
Author(s):  
M.R. Shenoy ◽  
R.M. de la Rue
Keyword(s):  

2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


1997 ◽  
Vol 7 (4) ◽  
pp. 523-541 ◽  
Author(s):  
C. Champenois ◽  
E. Audouard ◽  
P. Duplàa ◽  
J. Vigué
Keyword(s):  

2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


Sign in / Sign up

Export Citation Format

Share Document