Hydraulic resistance of rigid polyurethane foams. I. Effect of different surfactants on foam structure and properties

2004 ◽  
Vol 93 (6) ◽  
pp. 2821-2829 ◽  
Author(s):  
Pravakar Mondal ◽  
D. V. Khakhar
2020 ◽  
Vol 90 ◽  
pp. 106696 ◽  
Author(s):  
Milena Leszczyńska ◽  
Joanna Ryszkowska ◽  
Leonard Szczepkowski ◽  
Maria Kurańska ◽  
Aleksander Prociak ◽  
...  

2020 ◽  
pp. 0021955X2094309
Author(s):  
Iwona Zarzyka ◽  
Tomasz Pacześniak ◽  
Wiesław Frącz

In this work the results of the research on modification of rigid polyurethane foams properties by new polyols with borate and oxamide groups have been presented. Propylene glycols — the products of hydroxyalkylation of N,N′-bis(2-hydroxypropyl)oxamide bis(dihydrogenborate) by excess of propylene carbonate (PC) was used as a polyol component. The new polyols have been foamed using polymeric 4,4′-diphenylmethane diisocyanate, water and triethylamine. The modification of the foam structure by oxamide and borate groups guarantees their low water uptake, very good heat-insulating properties, good dimension stability and decreases their flammability, and does not worsen their mechanical properties and thermal stability.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6604
Author(s):  
Monika Kuźnia ◽  
Anna Magiera ◽  
Beata Zygmunt-Kowalska ◽  
Katarzyna Kaczorek-Chrobak ◽  
Kinga Pielichowska ◽  
...  

There is currently a growing demand for more effective thermal insulation materials with the best performance properties. This research paper presents the investigation results on the influence of two types of filler on the structure and properties of rigid polyurethane foam composites. Fly ash as a product of coal combustion in power plants and microspheres of 5, 10, 15, and 20 wt.%, were used as rigid polyurethane foams modifiers. The results of thermal analysis, mechanical properties testing, and cellular structure investigation performed for polyurethane composites show that the addition of fly ash, up to 10 wt.%, significantly improved the majority of the tested parameters. The use of up to 20 wt.% of microspheres improves the mechanical and thermal properties and thermal stability of rigid polyurethane foams.


2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


2021 ◽  
pp. 026248932198897
Author(s):  
Serife Akkoyun ◽  
Meral Akkoyun

The aim of this work is the fabrication of electrically insulating composite rigid polyurethane foams with improved thermal conductivity. Therefore, this study is focused on the effect of aluminum nitride (AlN) on the thermal and electrical conductivities of rigid polyurethane foams. For this purpose, aluminum nitride/rigid polyurethane composite foams were prepared using a three-step procedure. The electrical and thermal conductivities of the foams were characterized. The thermal transitions, mechanical properties and morphology of the foams were also examined. The results reveal that AlN induces an increase of the thermal conductivity of rigid polyurethane foam of 24% which seems to be a relatively noticeable increase in polymeric foams. The low electrical conductivity of the foams is preserved.


Sign in / Sign up

Export Citation Format

Share Document