Influence of high density polyethylene-g-maleic anhydride on compatibility and properties of poly(butylene terephthalate)/high density polyethylene blends

2006 ◽  
Vol 102 (6) ◽  
pp. 6081-6087 ◽  
Author(s):  
Rongrong Qi ◽  
Jinghui Nie ◽  
Chixing Zhou ◽  
Dalian Mao ◽  
Bian Zhang
2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


2012 ◽  
Vol 33 (9) ◽  
pp. 1465-1472 ◽  
Author(s):  
Tresa Sunitha George ◽  
Asha Krishnan ◽  
Newly Joseph ◽  
R. Anjana ◽  
K.E. George

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nga Thi-Hong Pham ◽  
Van-Thuc Nguyen

Poly (butylene terephthalate) (PBT) is a popular thermoplastic polyester resin but has low strength and low melting point. To improve its properties, PBT is often mixed with other resins, such as high-density polyethylene (HDPE). In this study, PBT/HDPE samples with 100% PBT, 5%, 10%, 15%, and 100% HDPE are generated and tested. The samples are analyzed by tensile strength, flexural strength, impact strength, and SEM tests. Adding HDPE will reduce tensile strength compared to pure PBT, in which 5%, 10%, and 15% PBT/HDPE samples obtain the values 40.23, 38.11, and 27.77 MPa, respectively. These values are lower than that of pure PBT but still higher than that of HDPE. Improving the HDPE portion mostly results in decreasing flexural strength. The flexural strengths of these samples are 87.79, 70.47, 55.3, 58.98, and 19.14 MPa corresponding to 100% PBT, 5%, 10%, 15%, and 100% HDPE samples, respectively. Moreover, the SEM microstructure of PBT and HDPE indicates a two-phase heterogeneous mixture with little or no adhesion between these phases.


2012 ◽  
Vol 293 (3) ◽  
pp. 941-947 ◽  
Author(s):  
E. Elshereafy ◽  
Maysa A. Mohamed ◽  
M. M. EL-Zayat ◽  
A. A. El Miligy

2014 ◽  
Vol 554 ◽  
pp. 137-140 ◽  
Author(s):  
A.R.H. Fatimah ◽  
Ikmal Hakem Abdul Aziz ◽  
A.Ghani Supri

The effect of polyethylene grafted maleic anhydride as a compatibilizer on the tensile properties, and swelling behavior of recycled high density polyethylene/ethylene vinyl acetate/ waste tyre dust (r-HDPE/EVA/WTD) composites was studied. r-HDPE/EVA/WTD composites with different tyre dust loading and the addition of polyethylene grafted maleic anhydride (PEgMAH) were prepared with Brabender Plasticorder at temperature of 160°C and rotor speed of 50 rpm. The result indicated that r-HDPE/EVA/WTD/PEgMAH composites exhibit higher tensile strength, modulus of elasticity, and mass swell resistance than r-HDPE/EVA/WTD composites.


2019 ◽  
Vol 69 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Luis Quiles‐Carrillo ◽  
Nestor Montanes ◽  
Vicent Fombuena ◽  
Rafael Balart ◽  
Sergio Torres‐Giner

2017 ◽  
Vol 146 ◽  
pp. 20-33 ◽  
Author(s):  
Xingping Kai ◽  
Rundong Li ◽  
Tianhua Yang ◽  
Shengqiang Shen ◽  
Qiuxia Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document