Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of polymeric packaging materials

2010 ◽  
Vol 115 (3) ◽  
pp. 1742-1750 ◽  
Author(s):  
Maria Rubino ◽  
Siriyupa Netramai ◽  
Rafael Auras ◽  
Bassam A. Annous
2011 ◽  
Vol 236-238 ◽  
pp. 2939-2944 ◽  
Author(s):  
Ri Ya Jin ◽  
Shuang Qi Hu ◽  
Zhi Chao Chi

Experiments were conducted to investigate the effect of concentration and duration of chlorine dioxide gas treatment on Surface sterilization of grape at 25°C. The results showed that the values of inactivate bacterial log reduction ofBotrytis cinerea,Penicilliumandalternariaincreased with the increasing of ClO2gas concentrations and treatment time. When the concentrations and treatment time was about 10 mg/m3and 30 minutes, respectively, more than 4 log reduction was obtained for the three spoilage bacteria on grape surface. Furthermore, the effect of chlorine dioxide gas treatment on quality of grape was investigated. It was found that the contents of vitamin C (Vc) and reducing sugar (RS) in grape also increased compared with grape without ClO2gas treatment.


2009 ◽  
Vol 114 (5) ◽  
pp. 2929-2936 ◽  
Author(s):  
Siriyupa Netramai ◽  
Maria Rubino ◽  
Rafael Auras ◽  
Bassam A. Annous

2005 ◽  
Vol 71 (9) ◽  
pp. 5399-5403 ◽  
Author(s):  
S. C. Wilson ◽  
C. Wu ◽  
L. A. Andriychuk ◽  
J. M. Martin ◽  
T. L. Brasel ◽  
...  

ABSTRACT The growth of indoor molds and their resulting products (e.g., spores and mycotoxins) can present health hazards for human beings. The efficacy of chlorine dioxide gas as a fumigation treatment for inactivating sick building syndrome-related fungi and their mycotoxins was evaluated. Filter papers (15 per organism) featuring growth of Stachybotrys chartarum, Chaetomium globosum, Penicillium chrysogenum, and Cladosporium cladosporioides were placed in gas chambers containing chlorine dioxide gas at either 500 or 1,000 ppm for 24 h. C. globosum was exposed to the gas both as colonies and as ascospores without asci and perithecia. After treatment, all organisms were tested for colony growth using an agar plating technique. Colonies of S. chartarum were also tested for toxicity using a yeast toxicity assay with a high specificity for trichothecene mycotoxins. Results showed that chlorine dioxide gas at both concentrations completely inactivated all organisms except for C. globosum colonies which were inactivated an average of 89%. More than 99% of ascospores of C. globosum were nonculturable. For all ascospore counts, mean test readings were lower than the controls (P < 0.001), indicating that some ascospores may also have been destroyed. Colonies of S. chartarum were still toxic after treatment. These data show that chlorine dioxide gas can be effective to a degree as a fumigant for the inactivation of certain fungal colonies, that the perithecia of C. globosum can play a slightly protective role for the ascospores and that S. chartarum, while affected by the fumigation treatment, still remains toxic.


2018 ◽  
Vol 42 (2) ◽  
pp. 54-60 ◽  
Author(s):  
Soojin Lee ◽  
◽  
Sejin Oh ◽  
Hansung Chung ◽  
Kwanghoon Choi ◽  
...  

2016 ◽  
Vol 36 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Hyobi Kim ◽  
Bora Yum ◽  
Sung-Sik Yoon ◽  
Kyoung-Ju Song ◽  
Jong-Rak Kim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


RSC Advances ◽  
2015 ◽  
Vol 5 (98) ◽  
pp. 80739-80748 ◽  
Author(s):  
Hua-Dong Huang ◽  
Sheng-Yang Zhou ◽  
Peng-Gang Ren ◽  
Xu Ji ◽  
Zhong-Ming Li

The successful conversion from hydrophilic GONSs to hydrophobic ODA–GONSs imparts LDPE nanocomposite films with enhanced mechanical and barrier performances for potential packaging materials.


Sign in / Sign up

Export Citation Format

Share Document