Masterbatch production of polyamide 6-clay compounds via continuous in situ polymerization from caprolactam and layered silicates

2011 ◽  
Vol 123 (1) ◽  
pp. 571-579 ◽  
Author(s):  
Bernd Rothe ◽  
Eike Kluenker ◽  
Walter Michaeli
e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Orietta Monticelli ◽  
Zenfira Musina ◽  
Francesca Ghigliotti ◽  
Saverio Russo ◽  
Valerio Causin

AbstractNanocomposites based on polyamide 6 (PA6) and montmorillonite-type (MMT) commercial clays, either unmodified or organically modified, were prepared by in-situ polymerization of ε-caprolactam (CL). The above materials were characterized in detail by a number of experimental techniques, including transmission electron microscopy (TEM), wide angle X-ray diffraction (WAXD), infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The formation of nanostructured systems was checked not only for the commonly used ω-aminoacid-modified clay, but also for other types of organoclays. In general, a correlation was found between nanoscopic swelling of the clay in molten CL, measured by X-ray diffraction, and level of clay dispersion in PA6. Specifically, with the most swellable clays, completely exfoliated nanocomposites were obtained. However, also layered silicates modified by compatibilizers having carboxy groups, because of the active role of latter in CL polymerization, formed delaminated nanocomposites despite their low degree of swelling in CL monomer. Both molecular mass and crystallinity of the polyamide matrix were found to be strongly influenced by the presence of specific layered silicates. In particular, some characterization techniques (WAXD, FTIR) have evidenced a close relationship between the MMT used and PA6 crystal structure. Namely, PA6 γ-form is promoted by clay with compatibilizer bearing the carboxy group, which is able to induce the polymer to be tethered on the silicate layers, thus provoking conditions of restricted mobility to occur.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 211 ◽  
Author(s):  
Valentina Sabatini ◽  
Tommaso Taroni ◽  
Riccardo Rampazzo ◽  
Marco Bompieri ◽  
Daniela Maggioni ◽  
...  

Polyamide 6 (PA6) suffers from fast degradation in humid conditions due to hydrolysis of amide bonds, which limits its durability. The addition of nanotubular fillers represents a viable strategy for overcoming this issue, although the additive/polymer interface at high filler content can become privileged site for moisture accumulation. As a cost-effective and versatile material, halloysite nanotubes (HNT) were investigated to prepare PA6 nanocomposites with very low loadings (1–45% w/w). The roles of the physicochemical properties of two differently sourced HNT, of filler functionalization with (3-aminopropyl)triethoxysilane and of dispersion techniques (in situ polymerization vs. melt blending) were investigated. The aspect ratio (5 vs. 15) and surface charge (−31 vs. −59 mV) of the two HNT proved crucial in determining their distribution within the polymer matrix. In situ polymerization of functionalized HNT leads to enclosed and well-penetrated filler within the polymer matrix. PA6 nanocomposites crystal growth and nucleation type were studied according to Avrami theory, as well as the formation of different crystalline structures (α and γ forms). After 1680 h of ageing, functionalized HNT reduced the diffusion of water into polymer, lowering water uptake after 600 h up to 90%, increasing the materials durability also regarding molecular weights and rheological behavior.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 4 ◽  
Author(s):  
Orsolya Viktória Semperger ◽  
András Suplicz

With the rapid development of the automotive industry, there is also a significant need to improve the raw materials used. Therefore, the demand is increasing for polymer composites with a focus on mass reduction and recyclability. Thermoplastic polymers are preferred because of their recyclability. As the automotive industry requires mass production, they require a thermoplastic raw material that can impregnate the reinforcement in a short cycle time. The most suitable monomer for this purpose is caprolactam. It can be most efficiently processed with T-RTM (thermoplastic resin transfer molding) technology, during which polyamide 6 is produced from the low-viscosity monomer by anionic ring-opening (in situ) polymerization in a tempered mold with a sufficiently short cycle time. Manufacturing parameters, such as polymerization time and mold temperature, highly influence the morphological and mechanical properties of the product. In this paper, the properties of polyamide 6 produced by T-RTM are analyzed as a function of the production parameters. We determine the crystallinity and the residual monomer content of the samples and their effect on mechanical properties.


2020 ◽  
Vol 27 (9) ◽  
Author(s):  
Dmitriy Leonov ◽  
Tatiana Ustinova ◽  
Natalia Levkina ◽  
Anton Mostovoy ◽  
Marina Lopukhova

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1787
Author(s):  
Jelena Vasiljević ◽  
Andrej Demšar ◽  
Mirjam Leskovšek ◽  
Barbara Simončič ◽  
Nataša Čelan Korošin ◽  
...  

Studies of the production of fiber-forming polyamide 6 (PA6)/graphene composite material and melt-spun textile fibers are scarce, but research to date reveals that achieving the high dispersion state of graphene is the main challenge to nanocomposite production. Considering the significant progress made in the industrial mass production of graphene nanoplatelets (GnPs), this study explored the feasibility of production of PA6/GnPs composite fibers using the commercially available few-layer GnPs. To this aim, the GnPs were pre-dispersed in molten ε-caprolactam at concentrations equal to 1 and 2 wt %, and incorporated into the PA6 matrix by the in situ water-catalyzed ring-opening polymerization of ε-caprolactam, which was followed by melt spinning. The results showed that the incorporated GnPs did not markedly influence the melting temperature of PA6 but affected the crystallization temperature, fiber bulk structure, crystallinity, and mechanical properties. Furthermore, GnPs increased the PA6 complex viscosity, which resulted in the need to adjust the parameters of melt spinning to enable continuous filament production. Although the incorporation of GnPs did not provide a reinforcing effect of PA6 fibers and reduced fiber tensile properties, the thermal stability of the PA6 fiber increased. The increased melt viscosity and graphene anti-dripping properties postponed melt dripping in the vertical flame spread test, which consequently prolonged burning within the samples.


2012 ◽  
Vol 713 ◽  
pp. 121-126
Author(s):  
A. Alfonso ◽  
J. Andrés ◽  
J.A. García

The present research work assesses the manufacture of long fiber thermoplastic matrix composite materials (GreenComposites). Thermoplastic matrices are too viscous to be injected into the conventional LCM (Liquid Composite Molding) molds, and then epoxy, polyester or vinylester resins are used. Nevertheless, the groundbreaking anionic polymerization of caprolactam allows such a synthesis of a thermoplastic APA6 matrix inside the mold. This matrix is sintered from the starting monomers, and presents high mechanical performance and recyclability. In order to do the reactive injection in a LCM mold, it is necessary to control the polymerization mechanism of such a thermoplastic matrix. This paper puts special emphasis on detecting and solving all problems which arose during synthesis. For instance, moisture values were assessed for all starting reactants, since humidity keeps polymerization from occurring. It is thought that once the synthesis and the resulting material characterization are well controlled, the manufacture of GreenComposites through in situ polymerization, as well as addition of state-of-the-art fabrics such as basalt, can proceed successfully.


2013 ◽  
Vol 29 (4) ◽  
pp. 1429-1436 ◽  
Author(s):  
Djamal Kherroub ◽  
Mohammed Belbachir ◽  
Saad Lamouri ◽  
Larbi Bouhadjar ◽  
Karim Karim Chikh

Polymer ◽  
2005 ◽  
Vol 46 (14) ◽  
pp. 5125-5132 ◽  
Author(s):  
Chungui Zhao ◽  
Guanjun Hu ◽  
Ryan Justice ◽  
Dale W. Schaefer ◽  
Shimin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document