On polyamide 6-montmorillonite nanocomposites obtained by in-situ polymerization

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Orietta Monticelli ◽  
Zenfira Musina ◽  
Francesca Ghigliotti ◽  
Saverio Russo ◽  
Valerio Causin

AbstractNanocomposites based on polyamide 6 (PA6) and montmorillonite-type (MMT) commercial clays, either unmodified or organically modified, were prepared by in-situ polymerization of ε-caprolactam (CL). The above materials were characterized in detail by a number of experimental techniques, including transmission electron microscopy (TEM), wide angle X-ray diffraction (WAXD), infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The formation of nanostructured systems was checked not only for the commonly used ω-aminoacid-modified clay, but also for other types of organoclays. In general, a correlation was found between nanoscopic swelling of the clay in molten CL, measured by X-ray diffraction, and level of clay dispersion in PA6. Specifically, with the most swellable clays, completely exfoliated nanocomposites were obtained. However, also layered silicates modified by compatibilizers having carboxy groups, because of the active role of latter in CL polymerization, formed delaminated nanocomposites despite their low degree of swelling in CL monomer. Both molecular mass and crystallinity of the polyamide matrix were found to be strongly influenced by the presence of specific layered silicates. In particular, some characterization techniques (WAXD, FTIR) have evidenced a close relationship between the MMT used and PA6 crystal structure. Namely, PA6 γ-form is promoted by clay with compatibilizer bearing the carboxy group, which is able to induce the polymer to be tethered on the silicate layers, thus provoking conditions of restricted mobility to occur.

2010 ◽  
Vol 24 (01n02) ◽  
pp. 148-156 ◽  
Author(s):  
ARIADNE L. JUWONO ◽  
RIWANDI SIHOMBING ◽  
YUNI K. KRISNANDI ◽  
SUTARNO ◽  
HANDOKO SUBAWI ◽  
...  

Organo layered silicates (OLS) were successfully synthesized from Tapanuli clay through an intercalated ultrasonic method using hexadecyltrimethylamonium bromide ( HDTMABr ) as a cation exchange agent. Tapanuli clay–epoxy nanocomposites were also successfully synthesized with an in-situ polymerization. X-Ray Diffraction and Transmission Electron Microscope (TEM) results demonstrated a pattern of clay morphology typically found in nanocomposite systems. Although the nanocomposites' diffractogram showed an exfoliation structure, the TEM findings confirmed that the OLS d -spacing is between 2.58 nm (the minimum value) up to 14.74 nm (the maximum value); which indicates the nanocomposites posses a mixed structure between intercalated and exfoliated structures. It was found that the presence of 1wt% Tapanuli organo clay in the epoxy systems provides higher stiffness and higher Heat Deflection Temperature by 30 % and 7 % respectively.


2009 ◽  
Vol 24 (8) ◽  
pp. 2728-2735 ◽  
Author(s):  
A. Saritha Chandran ◽  
Sunil K. Narayanankutty

Conducting nylon 6 fibers were prepared by in situ polymerization of aniline on to the fiber surface, after providing a chemical etching treatment to the fibers using chromic acid. The properties of the etched and polyaniline (PANI) coated fibers were evaluated using scanning electron microscopy, x-ray photoelectron spectroscopy, infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential scanning calorimetry. Though the etching process caused a marginal decline in the mechanical properties of the fiber, it provided a reasonably rough surface for PANI adhesion and enhanced the conductivity of the fiber. The conductivity increased from 4.22 × 10−2 to 3.72 × 10−1 S/cm at an etching time of 4 h.


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2016 ◽  
Vol 71 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Yurii Prots ◽  
Felix Lange ◽  
Christina Drathen ◽  
Marcus Schmidt ◽  
Yuri Grin

AbstractCombining laboratory X-ray powder diffraction with in-situ high-temperature synchrotron experiments and differential scanning calorimetry, it has been shown that Ba21Al40, Ba3Al5, Ba7Al10 and Ba4Al5 decompose peritectically at 914, 826, 756, and 732°C, respectively. In addition, a new binary compound with the composition Ba4Al7+x (x = 0.17) and the formation temperature of 841°C was found. The initial structural model (space group P63/mmc, a = 6.0807(1), c = 39.2828(8) Å) with four Ba and five Al crystallographic positions was developed. It is based on the intergrowth concept involving the neighboring Ba21Al40 and Ba3Al5 phases and the derived atomic arrangement is subsequently refined using X-ray diffraction data. The crystal structures of all phases in the Ba–Al system, except BaAl4, exhibit Kagomé nets of aluminum atoms resembling those observed for the B atoms in the Laves phases AB2. In the crystal structure of Ba4Al7+x, single Kagomé layers alternate with double slabs (MgZn2 motif) along [001] and are separated by Ba cations. Intergrowth features of Ba4Al7+x are discussed together with the neighboring Ba–Al compounds and Sr5Al9.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3105-3116 ◽  
Author(s):  
Roman Svoboda ◽  
Roman Bulánek ◽  
Dušan Galusek ◽  
Roghayeh Hadidimasouleh ◽  
Yadolah Ganjkhanlou

Differential scanning calorimetry and in situ X-ray diffraction analysis were used to study the products and mechanism of crystal formation in VOx–ZrO2 ceramics.


1992 ◽  
Vol 36 ◽  
pp. 379-386
Author(s):  
T. Blanton ◽  
R. Seyler

The effect of dimethyl-5-sodiosulfoisophthalate, SIP, on poly(ethylene terephthalate), PET, crystallization has been studied using in situ high-temperature x-ray diffraction, HTXRD. At low levels of SIP modification, PET-like crystallinity was observed. At high SIP levels, clustering of polyester ionomers was observed and crystallization was significantly suppressed. The HTXRD data along with differential scanning calorimetry, DSC, and small angle x-ray scattering, SAXS, indicate that the change from bulk crystallization to bulk ionomer formation occurred when 8-12 mol% of the diester linkages contained SIP.


2011 ◽  
Vol 172-174 ◽  
pp. 646-651 ◽  
Author(s):  
Gamra Tellouche ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Ivan Blum

The phase formation sequence of Ni silicide for different thicknesses is studied by in situ X ray diffraction and differential scanning calorimetry measurements. The formation of a transient phase is observed during the formation of δ-Ni2Si; transient phases grow and disappear during the growth of another phase. A possible mechanism is proposed for the transient phase formation and consumption. It is applied to the growth and consumption of θ-Ni2Si. A good accordance is found between the proposed model and in situ measurement of the kinetics of phase formation obtained by x-ray diffraction and differential scanning calorimetry for higher thickness.


2015 ◽  
Vol 88 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Rouhollah Bagheri ◽  
Reza Darvishi

ABSTRACT In this study, polyurethane (PU)/organomodified montmorillonite (cloisite®30B) is synthesized via in situ polymerization by reaction of an ether-based prepolymer with the isocyanate end groups and adiamine chain extender (4, 4-methylene-bis(2-chloroaniline)) in the presence of different amounts of nanoparticles dispersed in the prepolymer matrix by an ultrasonic mixer for 1 h. The synthesized polymers are cast on a pretreated carbon steel sheet and cured at 120 °C in an oven. The PU and its composites have been characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and mechanical testing. The XRD analysis of the cured samples containing 1 to 3 wt% cloisite30B showed intercalation segments in the silicate layers and exfoliation for 0.5 wt% nanoparticles. The highest mechanical properties were obtained using the cured exfoliated silicate layer sample. A twofold increase in the ultimate tensile strength and a 2.3 times increase in the adhesion strength were found for 0.5 wt% organoclay/PU as compared with that of pure PU. In addition, the exfoliated structure sample exhibited a 16% reduction in abrasion compared with that of pure PU.


Sign in / Sign up

Export Citation Format

Share Document