Design of a near‐infrared‐triggered photo/thermal dual‐responsive composite carrier with excellent biocompatibility for controllable drug release

2021 ◽  
pp. 52029
Author(s):  
Mengyuan Tian ◽  
Fuhua Xin ◽  
Yanjing Gao ◽  
Jun Nie ◽  
Fang Sun
2021 ◽  
pp. 096703352098235
Author(s):  
Tomomi Takaku ◽  
Yusuke Hattori ◽  
Tetsuo Sasaki ◽  
Tomoaki Sakamoto ◽  
Makoto Otsuka

The effect of grinding on the pharmaceutical properties of matrix tablets consisting of ground glutinous rice starch (GRS) and theophylline (TH) was predicted by near infrared (NIR) spectroscopy. Ground GRS samples were prepared by grinding GRS in a planetary ball mill for 0-120 min, measured by X-ray diffractometry (XRD) and NIR, and then evaluated for crystallinity (%XRD) based on XRD profiles. Tablets containing TH (5 w/w%), ground GRS (94 w/w%), and magnesium stearate (1 w/w%) were formed by compression. Gel-forming and drug-release processes of the tablets were measured using a dissolution instrument with X-ray computed tomography (XCT). Swelling ratio (SWE) and mean drug-release time (MDT) were evaluated based on XCT and drug-release profiles, respectively. Calibration models for predicting percent %XRD, MDT, and SWE were constructed based on the NIR of ground GRS using partial least-squares. The results indicated the possibility of controlling the pharmaceutical properties of matrix tablets by altering the pre-gelatinization of GRS based on changes in their NIR spectra during the milling process.


2015 ◽  
Vol 51 (32) ◽  
pp. 6948-6951 ◽  
Author(s):  
Yanfeng Zhang ◽  
Qian Yin ◽  
Jonathan Yen ◽  
Joanne Li ◽  
Hanze Ying ◽  
...  

Anin vitroandin vivodrug-reporting system is developed for real-time monitoring of drug release via the analysis of the concurrently released near-infrared fluorescence dye.


2018 ◽  
Vol 115 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Meng Qiu ◽  
Dou Wang ◽  
Weiyuan Liang ◽  
Liping Liu ◽  
Yin Zhang ◽  
...  

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.


RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 35658-35667 ◽  
Author(s):  
Lingling Zhao ◽  
Yajuan Zhang ◽  
Jia Shao ◽  
Hongze Liang ◽  
Haining Na ◽  
...  

Folate-conjugated dual-responsive micelles were developed, sustained and sensitive drug release from the drug loaded micelles was observed. Folate-targeted micelles showed higher anticancer activity and enhanced cellar uptake than non-targeted ones.


2017 ◽  
Vol 29 (40) ◽  
pp. 1703702 ◽  
Author(s):  
Chunlei Zhu ◽  
Da Huo ◽  
Qiaoshan Chen ◽  
Jiajia Xue ◽  
Song Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document